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FOREWORD

This report describes work performed in the Applied Mathematics Group
of the Analysis and Optimization Branch, Structures and Dynamics
Division of the Flight Dynamics Laboratory (AFWAL/FIBRD) under Project
2304N1 Computational Aspects of Fluid and Structural Mechanics, Work Unit
2304N102. This is an interim report on work carried out between
August 1978 and June 1980. The author, C. L. Keller, submitted the
report in October 1980.

The author wishes to thank Dr. K. G. Guderley for many stimulating
discussions and suggestions. He thanks also Ms. Mary Lipik for her .
typing and assistance in preparing this report.
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SECTION I
INTRODUCTION

In the last 10 years a number of procedures have been proposed for
determining vibration parameters of a structure from its measured
response to known excitations. The reason for this activity was due to
shortcomings and dissatisfaction with the classical phase resonance or
tune and dwell procedure.

In the past, the phase resonance method was characterized as requiring
a rather lengthy set up time. Practical 1imits on the number and
positioning of the shakers result in limitations on the accuracy of the
method. The desired information is obtained directly from the test.
However, obtaining satisfactory test results was a slow process requiring
highly skilled operators. Consequently, the test structure was not
available for other programed activities for a lengthy period, usually,

at a crucial time.

Accordingly, other methods were sought for which the test set up would
be simpler, require fewer excitation points, and be less dependent upon
operator skill. The desired information need not be given directly by
the test but would be obtained at a later date from the test data after
the structure was released.

For those methods for which test results are not known until some
time after the structure is released there is a danger that, due to an
undetected error in the test set up, the test data is worthless,
Frequently, in such cases it is impossible to reschedule the test until
after such a time that the main reason for the test is past.

In Section II of this report a procedure is described for computing
the complex characteristic values and vectors from the steady state
response to sinusoidal excitations at a single point, In Section III
we describe a modification of the procedure so that it can handle the
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case of two close characteristic values. In a previous report,
AFFDL-TR-78-59 (Reference 1), we have shown how to modify the procedure
to handle characteristic values of multiplicity greater than 1.

We believe the procedure described in Sections II and III has most of
the advantages of the phase resonance method with most of the shortcomings
eliminated. Since it depends upon excitations at a single point the test
set up is simpler. Also, since data only in the vicinity of resonance is
used, only the frequency needs to be adjusted. The frequency adjustments
do not have to be too precise, consequently, the degree of operator skill

is of less importance.

The computations are simple. We believe the procedure can be
automated so that the final results are obtained practically on line.
Accordingly, errors in test set up, if any, should be detected early in
the allotted time for the tests, corrected and the test rerun. Moreover,
the nonlinear damping and stiffness properties can be calculated as
functions of the excitation amplitudes.

The procedure described in Sections II and III is based upon exci-
tations at a single point. However, it should be clear from the
discussion of these sections that the procedure is not limited to single
point excitation. For multipoint excitation, the quantity vlr, Equation 2,
no lTonger isolates a single component of the vector Vi but instead, Vi "
is some linear combination of the components of Vie: Thus for multipoint
excitation one needs to perform sufficiently many additional independent
experiments to determine at least one (and consequently all) of the
components of Vi appearing in the linear combination vlr. It is clear
also that this is accomplished by varying components of the vector r, v{r
that is, by varying the amplitude at the set of multiple excitation points

in such a way that the total energy input is essentially constant.

Using the procedure of Sections II and III modified for multiple
point excitation does not affect the test set up appreciably. Rather, it
amounts to some additional experiments and computations which are essen-
tially of the same character as for single point excitation.

ro
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In Section IV we describe a Newton procedure for determining the
characteristic values and make some additional remarks concerning the
iteration process of Section II. 1In Section V we describe the numerical
experiments which we perform to test the procedure of Sections II and III
and give the results of these numerical experiments.

In Appendices A-D we give mathematical background for the method of
Section Il and for some of the other methods examined. Appendix A is
mainly results, from the theory of linear systems of differential
equations with constant coefficierts, which are helpful for the identi-
fication problem. Appendix B develops, in considerable detail, Prony's
method and contrasts Prony's method with the method of Ibrahim
(References 2-5) for determining the parameters in a sum of exponential
functions. Appendix C considers some aspects of the matrix eigenvalue-
eigenvector problem and the use thereof in Wittmeyer's method
(References 6 and 7). In Appendix D we discuss the problem of solving
systems of lincar equations which may be over, even, or under determined
and the method Link and Vollan (Reference 8).

The methods for determining vibration parameters can be classified
in various ways depending upon which features are emphasized. One
rather evident category consists of those methods which determine mode
shapes and frequencies. That is, numbers X and vectors u which satisfy
the conditions, either

[AZM +AC +Klu=0

or

[XZM +KJju =0

A second category consists of those methods which determine the mass,
damping and stiffness matrices M, C and K directly. The second category
appears to consist of variants of the Link and Vollan method and the
"i11-conditioned" method described in Appendix D. Thus most methods
belong to the first category.
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Many methods use the frequency response function (Equation A38) in
some way or other. The frequency response function can be written in
different ways depending on how the characteristic vectors are normalized
and which vibration parameters are displayed.

The method discussed in References 9-13 computes {a column of) the
frequency response function matrix from the response to excitation of
impulse or random type. The procedure uses fast Fourier analysis
methods (Equation A28) and is highly automated. In this procedure the
frequency response function is obtained numerically, that is, as a set
of number pairs. The second entry of this number pair is the "value"
of the frequency response function and the first entry is the frequency
w to which the second entry corresponds. Lastly, the parameters in the
frequency response function are determined, usually, according to the
least squares criteria. Thus advances in electronics, in sensing and
recording equipment and minicomputers, have made a complicated procedure
economically practical.

Hence the fast Fourier analysis procedure discussed in References 9-13
uses broad band excitation to produce a transient response. From the
Fourier analysis of this experimentally obtained data one obtains the
frequency response function (numerically). Finally, from the "fit"
of the expression for the frequency response function to the experimentally
determined values of the frequency response function one obtains the
complex mode shapes and frequencies,

The method of Section II is based upon the frequency response
function matrix and its properties also. The complex amplitude y of
the steady state response y exp (iwt) to the harmonic excitation r exp
(iwt) is, essentially, the value of the frequency response function
corresponding to the frequency w. From knowledge of the nature of the
frequency response function we choose a set of frequencies w and obtain
the values of the frequency response function corresponding to the set
of frequencies w. These values of the frequency response function are
obtained experimentally as the complex amplitude y of the steady state

4
r
l
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response to the harmonic excitation r exp (iwt). The set of values of
the frequency response function, so obtained, are used to set up a
system of nonlinear equations for the parameters (coefficients) of the
frequency response function. The complex mode shapes and frequencies
are obtained as the solution to this nonlinear system of equations.

The method of Wittmeyer (References 6 and 7) is yet another method
based upon the frequency response function and its properties. This
procedure is a method for solving a matrix eigenvector-eigenvalue problem
appropriately modified to be applicable to the ground vibration test
problem. Matrix eigenvector-eigenvalue methods are iterative procedures,
generally. The experimental data is obtained from multipoint sinusoidal
excitation. One alternates between experiment and computation. The
current 3pproximation to the eigenvector (being determined) is obtained
from experiment. If this approximation is not satisfactory an improved
excitation vector is computed from the experimental data and the
experiment repeated.

The method of Link and Vollan (Reference 8) determines the damping
and stiffness matrices directly from steady state response to sinusoidal
excitation data. (The mass matrix M usually is assumed known.) This
procedure uses the same kind of data as the method of this report. The
damping and stiffness matrices C and K are obtained as the solution to
a system of linear equations.

Using the pseudo or generalized inverse, if necessary, the linear
system of equations is solvable for the matrices C and K regardliess of
whether the system of equations for C and K is over, even or under
determined. Of course, if the system is under determined then the
matrices C and K are even less well known.

An adequate number of linearly independent conditions are needed
for a strict solution for the matrices C and K. Equation A29 shows the
relation of the matrices M, C and X to the frequency response function,
Equation A29 also shows that Tinearly independent conditions are obtained
at, or near to resonance frequencies.

- MR P
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[brahim’s method (References 2-5) determines the complex eigenvectors
and frequencies from the free response of the system. Two matrices are
generated from the data obtained from the free response sampled at equal
time increments. The complex mode shapes and frequencies are obtained
from the eigenvalue and eigenvector solution to the generalized
eigenvalue-eigenvector problem associated with these two matrices.

The method produces an equivalent model for the structure. That is,
it produces a model which has the same eigenvectors as the structure.
However, since no particular normalization is required or enforced, the
mass, stiffness and damping matrices cannot be determined by the method;
at least, not without some additional experiments and computation.

The phase resonance method has also made use of the development n
computers and visual display techniques to bring about improvements in
the method. The indicator function, basically, is the sum of the
magnitudes of all the in phase amplitudes at all the measurement points,
With the on line computation and display of the indicator function an
operator can see immediately the effect of a change in amplitude at an
excitation point or the effect of a change in the excitation frequency.
The phase resonance method is still widely used in ground vibration
tests.

Ilﬂi—i
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SECTION II
DETERMINATION OF THE CHARACTERISTIC VALUES AND VECTORS
In this section a method is described for determining the parameters

in an expression for the frequency response functicn matrix from the
steady state response to sinusoidal excitations. The quantities

determined are the characteristic values Xk k=1, .., m, the corresponding'

characteristic vectors u, and the corresponding characteristic vectors

k
Vi of the transposed system. (The notation, conventions and results of

Appendix A are assumed as being familiar throughout this report.)

The method described here is essentially the same as in Reference 1,
However, in Reference 1 vectors were treated as single entities. That
is, very little attention was paid to the individual components except
for two instances when the fact was used that one could assume a special
value or special values for a component or several components. Here, in
order to display certain features with clarity, the process is described
in terms of a scalar component.

The frequency response function parameters will be determined by an
iterative process. We do not have a formal proof for the convergence of
this process. However, we are able to make some observations which lead
one to believe that the process is convergent. Additionally, our
numerical experience with the iteration process, although limited, has
not indicated any difficulties, thus providing evidence that the process
is convergent under conditions sufficiently general for our purposes.

Usually, in determining the characteristic values and vectors, one
assumes that the characteristic values are well-separated. In this
section we make this assumption also. In Reference 1 we showed that the
method described here could be modified to handle characteristic values
of multiplicity greater than 1. In Section III of this report, we will
show how to extend the procedure of this section so that it can handle

the case of two close characteristic values also.
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The procedure described in References 9-13 analyzes the transient
structural response to broadband excitation and uses the relation between
the frequency response (or transfer) function matrix and the transforms
of the excitation and response as expressed by Equation A28. The
procedure to be described in this section uses instead the relation
between the frequency response function matrix, the steady state response
to an harmonic excitation and the harmonic excitation.

It is assumed that after discretization the equations of motion of
the structure are adequately represented by a system of equations of
the form

Mx + Cx + kx = f (1)

Here M, C and K denote the mass, damping and stiffness matrices
respectively. M, C and K are taken as square matrices of order m. In
addition, these matrices are usually assumed to be symmetric. The
components of the vector x usually are displacements at stations on the
structure.

The steady state response of a system of equations of the form of
Equation 1 to an harmonic excitation f(t)=r exp(iwt) is x(t)=y exp(iwt).
Here r and y denote constant vectors. The frequency response function
matrix and the vectors r and y satisfy the condition

n ukv:r
k=1 @ 7 Mk

(2)

y:

(Equation A38). The vector y is determined experimentally in some way from
the steady state response to the excitation r sin wt. One possible way
is from the system of equations (Equation A37). The vector r, of course,
is chosen, usually with only one component differing from zero. This

is the component corresponding to the station on the structure at which
the excitation is applied.

The frequency response function matrix may be written in various ways.
The particular form is a consequence of the normality conditions imposed

b SRR Ui TURh NV S-L
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on and satisfied by the characteristic vectors Uy and Vi k=1, ..., m.
For characteristic vectors which satisfy the normality condition

expressed hy Equation A13, the frequency response function matrix takes
the form given in Equation 2. It should be clear that one does not need
to know the vectors up and Vi normalized so that they satisfy the

condition (Equation A13). Rather U and v, are determined so that
Equation 2 is satisfied and when so determined, then the normality |
conditions (Equation Al13) are satisfied also. i
1
]

This enforcement of the normality conditions enables one to determine

the matrices M, C, and K after the quantities Ak‘ uy and v, are

determined. Thus after A Uy and v, are determined so that Equation 2

k
is satisfied for the steady state response to any harmonic excitation,
the relations expressed by Equations A22, A24 and A25 hold. It should
not be inferred that these relations will be used directly in computing

M, C and K. Rather some relations derived from Equations A22, A24 and

A25 or the procedure given in References 12 and 1 may be more efficient
! . for computing these matrices.

From Equation 2 it is clear that for a vector r with only the pth
component different from zero, the vector y is this pth component times
the pth column of the frequency response function matrix. It follows
then that the jth component of the vector y is a complex valued function

o wj(m) of the form

wj(w) = kgl bjk/(iw—kk) + kg] Bjk/(iu-ik) ' (3)
If the bjk and Ak are not known, then the expression for the function
wj(w) contains n=2m unknowns. To determine the bjk and A, n independent
conditions are needed. These n conditions are provided by the values of
w.{w) corresponding to n distinct values of w. We will show that if we
know wj(w) for n judiciously chosen values w = mp, p=l, ..., n the
resulting system of nonlinear equations is readily solved for the Ak

and bjk by an iteration process.

NS NG s v 7 N— : i : b el K ~y4;]
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In Figure 1 we have plotted in a complex plane values of a function
w(w) of the form expressed by Equation 3 for values of w ranging from 0.5
to 12 at increments of 0.05. Figures 2 and 3 are plots of values of the
magnitude and argument respectively of the same function for the same
range of values of w. These figures display the features which charac-
terize functions wj(m) of the form expressed by Equation 3. The
appearance of Figure 3 is determined by the range of values selected
for the argument of a complex number.

From Figure 2 it is observed that the local maximum of |w(w)| occurs

at some value of w close to Im[xk] for k=1, ..., m. From Equation A36 it
follows that |wj(m)| is the amplitude of the steady state response to r
sin wt. Also, in Figure 1, if we would label the plotted points with
the value of w to which they correspond - we would observe that w(w)

Y changes most rapidly when w is close to Im[Ak]. That is, in Figure 1
the values of w(w) for which w is close to Im[kk] are those points which
are connected by rather large straight line segments.

l From the above observations it is clear that we may suppose that n

values of w and the corresponding vector y are known in pairs, say wp

and w , with corresponding vectors yp and y for p=1, ..., m.

m+p
! The values of wp satisfy the conditions

m+p’

E Wy < Im[xp] <w (4)

m+p

| And the difference CH p -wp is small relative to the differences

wp + 17 % s 0 and mp - wm +p-1

function wj(m), which represents the jth component of the vector y(w),

Hence the value of the complex

is known for n values of w.

It was noted above that the system of equations obtained from Equation 3
? when w(w) is known for n values of w is nonlinear. We will now describe

an iterative process for determining values of Ak and bjk which satisfy

the system. Set

N m _ .
wjp(u) = kE] (bjk/(1w-kk) + Bjk/(1u-kk)) + ij/(1w-Ap) (5)
k#p

10
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Then

byp/ (i) = wylw) - wy(w) (6)

Solving Equation 6 for b.p we obtain therefrom the equality

(Gup2) g (g = Wy 0)] = Gy A D G0 = W )] (7)

These equations, Equation 7 solved for Ap and Equation 6 solved for bjp
are the basic equations of the iteration process.

We show next how to determine starting values or initial approximations

for »_and b, . The principal observation is that if wy and We & p are
close to Im[Ap] then, from Equation 3

wj(wp) = bjp/(1wp-xp) approximately
and
wj(wm+p) = bjp/(1wm+p-xp) approximately.
Hence
g )Mo 0) = (oA )/ (ug-d)

which is readily solved for Ap, see Equation 10 below. Alternatively,
from Equation 7 we obtain

A [wJ(wm+p) - wj(wp) (WJp( m+p) - wJp(wp))] =

) = wslug) - (W (w

iw [w (w o Ym+p

3 \¥mep ) - ﬁjp(wp))] (8)

+ i(wm+p - wp)[wj(wm+p) - ij(wm+p)]

N
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From the graph of QJp(m) Figures 4 and 5, it is evident that

(mm+p) - Jp(wp) is sma]l, espec1a11y if Up 4 p " wp is small. Hence
neg]ectlng the difference w. (u ) - (w_), Equation 8 can be

Jp “m + p JP p
written as

)\ [wJ( m+p) - wj(wp)] = iwm+pwj(wm+p) - iwpwj(mp) - il g™ p)wJp( m+p)( 5)

Also, if Wy v p ” ¥p is small and wjp(wm + p) is not too large, we may

neglect the 1ast term of Equation 9 and we have as the equation for an

initial value for X

) = s ()1 () = w3 )] (10)

Next, neglecting the term ij(m) in Equation 6 the starting value for bjp

is given by

<4
bjp = (1wp kp)wj(wp) (1)

Thus, from Equations 10 and 1) we can determine initial approximations
' : A and b, for p=1, ..., m and for j=1, ..., m. These initia) values

depend on the function wj(m) at n points wp and O+ P for p=1, ..., m.
Once these initial values are determined, they can be used in the right
hand side of the exact equations, namely

~

" y = i 4 (e )M () ) = 0p iy lup) A_Jp(“p))] (12)
p -W. - W, .
[ (o) = Wyplupep) = Wylag) + Wgplop)]
and
o= (w, - W, fw, = A (13)
bip = (Hilup) = wyp(w))) Ciwp = 2))
to obtain better approximations for Ap and bjp for p=1, ..., m and j=1,
., m. The values of Xp and b, jp so obtained can then be used again in
Equations 12 and 13 to compute st111 better values of Ap and bJp and so

on until prescribed tolerances are satisfied (or a fixed maximum number of

iterations completed).
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Performing the computations described, Equations 10, 11, 12 and 13
determine vectors bk’ k=1, ..., m where bk has components bjk for j=1,
.., m. Hence from Equation 2 we have

u vTr = b (14)

k'k k

For the case where the matrices M, C and K are symmetric, excitation at a
single point is all that is needed to determine the vectors Uy and Vi
since Vi is just some scalar multiple of Up- Thus we may take

et (1)

where e denotes the coordinate vector with first component 1 and all
other components zero. Moreover, we may suppose the vectors Up normalized
so that the first component of Uy has the value 1,

= (16
Uy 1 )
Then from Equation 14 we have
T, s «_
U
or
ik = bp/T an
and for j # 1
Uik = b sk 7Pk (18)
and
Yik T Vet Yk (19)

In order to describe the process for the nonsymmetric case, it is
convenient to modify slightly the notation used in the symmetric case.
Let us denote the vectors bk by bk(1). The 1 in parenthesis indicates
that the vectors bk(l) are determined from data obtained by exciting
Equation 1 at station 1. If we had excited Equation 1 at station q with
the same set of frequencies as used at station 1, then from the associated

response we could have determined vectors bk(q) in exactly the same way
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(using the same equations) as the vectors bk(l) were determined.
However, we will see that it is not necessary to determine the vectors
bk(q) for k=1, ..., m, and q=1, ..., m completely.

Nevertheless, for the moment suppose that at the same time Ak and
bk(1) are being determined iteratively we compute also bk(2), cees bk(m)
for k=1, ..., m. For the nonsymmetric case only Equation 19 does not
hold but from Equations 16, 17 and 18 we determine from the vectors bk(I)
the vectors up and the component Y1k of i for k=1, ..., m. Thus we
need the remaining components of the vectors Vir

For the vectors bk(q), for k=1, ..., m we have the relation

T A.- A= 20

Uk 8" T UVak” bk(q) (20)
In this vector equation there is only one unknown, namely, the scalar
qu' From this it is clear that all we need to determine the scalar vqk
is one component of the vector bk(q) for k=1, ..., m.

In order to summarize the information required for the nonsymmetric

case let us rewrite Equation 2 as
T

n uv, er
ylu,g) = 1 Kk QO (21)
k=1 k

Let wj(w,q) denote the jth component of the vector y{w,q). Then in place

of Equation 3 we have

m - —

For the nonsymmetric case we need the values wj(mp,l) and wj(wm N p,1) for

p=1, ..., m for each value of j for j=1, ..., m. We need also wj(wp,q)

and wj(wm N p,q) for p=1, ..., m for each value of q for q=2, ..., m but
only for one value of j.

14
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As in the symmetric case set

N _ _ m _ 3 (23)
wjp(w,q) = bjp(Q)/(m-)\p) + kE] (bjk(q)/(w-)\k) + bjk(q)/(ww-kk)
k#p
Then
bjp(Q)/(im - Ap,) = wj(w’Q) - ij<w,Q) (24)
And we obtain therefrom
(1wp-lp)[wj(wp,q)-wjp(wp,q)] = (ium+p-kafwj(wm+p,Q) Yip m+p’q)](25)
The starting values for xk are computed from
= j - - w,(w,1 (26)
Pp = I lonips(Onep 1) = 0 Wil 1)1/ Dwglop, o51) = wylep,1)]

for any convenient value of j for p=1, ..., m, The starting values for

bjp (1) are computed from

bjp(]) = (iwp -Xp) wj(wp,l) (27)
for p=1, ..., mand for j=1, ..., m. Starting values for bjp(q) are
computed from

bsp(a) = (fwy, = Ap) W;lwp,a) (28)
for say j=1 and for p=1, ..., m and q=2, ..., m.

Once we have approximations for Ak and bjk(q)’ the function ij(w,q)

can be evaluated at wp and Wy p’ Improved values of Ak can then be

computed from the equation

y = 1[‘*‘m+p WJ(Um+p ]) wjp(wm**p’])) = wp(wJ(UJp’ )_"2—((9 9])] (29)
P i -
Citg e 1) = Wipligype 1) = wyliops 1)+ gy (1))

i A
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for any convenient value of j and for p=1, ..., m. Improved values of
bjp(l) are computed from the equation

= 3 ’ - A- :1 i - A
bjp(1) (W (v 1) wJp(wp ))(1wp p) (30)
for p=1, ..., mand j=1, ..., m. Similarly, improved values of bjp(q)
are obtained from
i
= - w. (w,9))(Hw_ - A
b3(a) = (w3 (500) = iy (o)) (i = Ap) (1)

for say j=1, p=1, ..., mand gq=2, ..., m. The values of Ap and bjp(q)
obtained from Equations 29, 30, and 31 are used again in these equations
to obtain improved values and so on until tolerance requirements are
satisfied or a fixed number of iterations completed.

- From the values of bjk(q) obtained from the above computations we
now compute
) ) (32)
"4 Vi = by (177
; for k=1, ..., m. Next
P H
: = 33
| i = b (/o (1) (33)
for j=2, ..., mand k=1, ..., m. Recall
. Uy = 1 (34) H
for k=1, ..., m. Then
qu = b]k(Q)/?‘ (35)

for q=2, ..., mand k=1, ..., m. It is clear that the value of rin
Equations 32 and 35 could be different for different values of the

index g.

16
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SECTION 111
TWO CLOSE CHARACTERISTIC VALUES

In this section we describe a modification of the procedure given in
Section II which enables us to handle the case of two close characteristic
values. In order to describe this procedure we consider a complex
valued function w{w) of the form

2 - -
wlw) = £ (b./(iw = A) + b /(iw - 2,))
Zr Kt Py k (36)
The problem is, as in Section II, the determination of the A and b, ;

but complicated by the fact that A] and xz are close. Hence, for example
we may not neglect the term bz/(iw - Az) when w is close to Im[x]].

- First, we want to make clear the relation of the function w(w) of
Equation 36 to the frequency response function and the iteration process

. of Section II. Thus w(w) denotes the value of the jth component of the

B frequency response function, that is, the function wj(m) of Equation 3

with all the terms for k > 2 either ignored as a first approximation in
the iteration process or subtracted off for the succeeding steps of the
iteration process. The subscript j has been left off for notational

simplicity.
° Set ~ - - - -
w{w) = wlw) - b]/(1w - A]) - bz/(1w - lz) (37)
that is ~
w(m) = b]/('lu) - )\]) + bz/('lu) - )\2) (38)

We suppose wj = w(mj) is known for four values of W, close to Im[x1] and
to Im[AZ]. Using this data, Equation 38 becomes a system of four
equations for the four unknowns b1, b2, A] and AZ' The unknowns b] and
b2 are easily eliminated from this system. In doing so one obtains

, two equations for A, and A,. We will now give some of the details.

17
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Solve Equation 38 for b]

then subtract Equation 39 for j # 4 from Equation 39 with j = 4 and
after some rearranging and simplifying obtain

0 " N 9 ; . (40)
ib, (2 - r,) = [1(ujwj - wp¥,) - x](wj - W) IP(2, 5, 4)/(wj wg)
where

. 2 : - 4]
P(k, §, 2) = N " 1(mj + ml) ijl (41)
for £ =4 and j =1, 2, 3; that is, a system of three equations for the
unknowns b2, A] and AZ' Clearly, b2 is readily eliminated from
Equation 40 leaving us with a system of two equations which we can write
in the form

(42)

i[(w3w3 - P2, 3, 4) (wgy - wgP(2, 4)}
W

for j =1, 2.

Observe that x] occurs linearly in this system of equations. Hence
A\ could be eliminated leaving a single equation of the fourth degree in
Ay This resulting polynomial equation could be solved for xz ind, of
course, we would have to choose the correct root. Thus taking "j = w(wj)
as a first approximation we could determine A, as described, compute A]
from Equation 42, b2 from Equation 40 and b1 from Equation 39. In this
way one obtains starting values for b], b2, A] and AZ. These initial
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values for b], b2’ A] and AZ can be used in Equation 37 to compute better
values of wj for j =1, 2, 3, 4 and the procedure just described for
calculating Ags A], b1 and b2 repeated.

Since solving a fourth degree polynomial for Ao and selecting the

appropriate root is not an attractive procedure, we sought an alternative.

Let us make two observations. First, if AZ is known then Equation 42
uniquelyv determines A]. Secondly, if we had first eliminated b2 and then
b] we would have obtained Equation 41 with the roles of A and Az
interchanged; so if we know A] then xz is uniquely determined. Al1l the
equations needed for treating the case of two close characteristic values

are now available.

We do not feel that we have sufficient numerical experience to give
a rigidly fixed recipe. However, of the various aiternatives which we
tried the procedure which we describe next seemed best. We assumed an

initial approximation to A2. From Equation 41 we compute

NN I ]
P(2, i, 8) = >\2 ‘l(wJ. + w4))\2 ij4 (43)

for j = 1 and 3. Thun from Equation 42 we have

(44)

~ ~

1_ [(;.}\b - N2, 304 (g - W P2, 1, 4)J

u\4 - (,.\3 w4 - u)]

which is easily solved for A]. Now that A] and Az are known we use
Equation 40 to compute b2, Equation 39 to compute b] and Equation 37 to
obtain improved values of Qj for j =1, 2, 3, and 4.

19
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Next we compute
X o2
for j = 2, 4 and then solve

~

(wy = wIP(1, 2, 1) (wy - w1, 4, 1)}

w]-wz w-l-w4

(46)

-
~

(wzw2 - w]w])P(], 2, 1) (w4w4 - w]w])P(l, 4, 1)

W '(JJ2 (.L)]'w4

for Az. Now tk~t a new value of Az is available we use

~

iby (= Ag) = [ilvswg - wqwp) = Ay(ws

o PO, 3, 1/ - w) (a7)

with either j = 2 or j = 4 to compute b] and

by = wi(Hwg - 2] = by (Huy - A))/ (g - Ay) (48)

again with either j = 2 or j = 4.
In the procedure described above we have assumed

0 < Im[x]] < Im[Az]
and

w]<w3<w2<w4.

It also seemed better to perform two successive updates of the close
characteristic values and their associated coefficients for every update
of the well separated characteristic values and their associated
coefficients, at least in the later stages of the iteration process.




AFWAL-TR-80-3136

STCTION IV

THE FREQUENCY RESPONSE FUNCTION BY NEWTON'S METHOD

In Section I1 we described the determination of the frequency
response function from experimental data by an iteration process. 1In
this section we describe the determination of the frequency response
function by Newton's (iteration) method. The method of Section II and
the Newton method are not too different from one another.

For simplicity we leave off the subscript denoting the component of
the frequency response function (Equation 3). The problem is, as in

Section II, the determination of the unknowns b, and Ak in the function.

k
m _ - -

w(w) = ki] [bk/(1w-xk) + bk/(1m-xk)] (49)

from values wj = w(mj) for j=1, ..., n=2m.

Set
m K3
Ww, b], k], , bm, Am) = kz] bk/(1m-kk) (50)
W(w, bys Ay ..., b, A ) is a function of the variables w .by, Ay, ...,
1 1 m> m 1 1
bm’ Xm’ Suppose we know

WJ = N(wj, b], )], ces bm’ Xm) (51)

for n values of j and we have some initial "gquess" b]°, A]°, ..., b °,

m
Am for the values b1, A], e bm, Am‘ Then from Equation 50 we can
compute
o _ . 3 o [}
wj = w(le, bﬁi, )\], es ey bm; )\m) (52)
for J=1, ..., 2n and from the system of equations
¥ W W + M Lo (53)
b dby + o8 Pyt dby, W By = WyH;

21
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for j=1, ..., n we can determine the increments db], dxl, ey dbm, dAm
for improving the approximations b?, Af, ces b;, A; . Thus
bk (new) = bk + dbk
and (54)
A; (new) = Ak + dAk

In the system of equations defined by Equation 53

- . 4o (55)
aw/abk 1/(1wj Ak)
and
M/ar, = b/ (Hw; - 20)2 (56)
k k J k :
In the practical situation we do not have the function values wj
but have instead the function values W Hence we replace wi in the
system Equation 53 by '
m . -
I I A (5/)

The initial guess for the bk and Ak is obtained in the same way as
in Section II. The main difficulty with this process is solving the
n by n system of complex equations, Equation 53, for each iteration step.
At this time we believe the method of Section II will involve fewer
computations even though it may require more iterations. The Newton
process given here is for the case of well separated characteristic
values only.

Here now we re-examine briefly the procedure presented in Section II,
We can simply the notation and still illustrate the main features if we

consider, as above Equation 49, a single complex valued function. We
suppose the value w(w) given for 2m values of w. Thus we take

wlw,) = w, (58)

22
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R for j =1, ..., m. We suppose
wy < Im [Aj] < Uiy (59)

and that the difference “h+j -

above, namely, solving the resulting system of equations for the m

Wy is small. The problem is the same as
coefficients bk and the m characteristic values Ak.

For the 2m values of w the associated system of equations, Equation 49,
is nonlinear in the Ak. The first step in the solution process is to
rewrite this system of equations. Set

. - m -
wj = bj/(1mj-xj) + kE][bk/(mj-kk) + bk/(iwj-kk)] (60)

k#J
N W

m+j is defined similarly.

The system of Equation 49 now appears as
.= b./{iw.-),) + W,
Wy = by/(lug=g) + W

. (61)
= - + .
“mag ™ B3 Bty g) * Mg

for j=1, ..., m. For a fixed value of j the two equations in the system,
Equation 61, can be solved for Aj and bj' We have

» )\J_ = i[wm+jwm+j' ijj - (wm+jwm+j - ijj)]/[wm+j - wj - (Hm+j - Hj)]
(62)
by = (wy - Wy)(duy - A5
™
for j =1, ..., m. Now then let us regard the Aj and bj as variables.
. If we substitute in the right hand side of Equation 62 values Ajo’ bjo

for j =1, ..., mwe will obtain say values Aj]’ bjl' for j =1, ..., m.
Thus the system of Equation 62 transforms a set of 2m complex numbe.s
into a set of 2m complex numbers. The desired solution is a set of 2m
complex numbers which transform into the same set of complex numbers

respectively.
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In Section II we take b] = .., = bm = 0 initially. For this
particular assignment of the coefficients bk it is not necessary to
specify the M+ Then for j =1 we use Equation 62 to compute A] and b]’
We could have computed Aj and bj for j =2, ..., malso for b] = .= ]
bm = 0. Instead, we use A], b] and b2 = ... = bm = 0 to compute AZ and
b2 and so on.

We would like to be able to show that the transformation defined
by Equation 62 is a contraction mapping. Then it would follow that the

iteration process of Section II converges to a unique fixed point.
As of this time, however, we have not been able to determine a region
of convergence.

24
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SECTION V
RESULTS AND CONCLUSIONS

In this section we describe and discuss briefly the numerical
experiments performed to test the procedures presented in Sections II and
II1. From the discussion there and Appendix A the problem of interest
reduces to the determination of parameters bk and Xk which define a
complex valued function w(w) of the form

m -
wiw) = Do/ Gu - 3y ) + b/l - )

Qur first objective is to exhibit the influence of a coefficient bk’
in our case b4, on the function w(w). The characteristic values Ak and
coefficients bk used for defining functions w(w) are listed in Tables
1A-4A. The values of Ak and bk are the same in all these tables except
for b4. Since M and bk are complex quantities it takes a pair of real
numbers to specify them. The functions w(w) resulting from simple
modifications of the coefficient b4 are shown graphically in Figures 7a-10a.
Figures 7b-10b are the graphs of [w(w)| for the same modifications of
the coefficient by - In order to facilitate comparison these graphs are
shown collectively in Figures 6a and 6b respectively.

One observes, Figure 6a, as the coefficient b4 changes from quadrant
to quadrant there is a corresponding change in one loop of the associated
graph. The remaining portion of the graph is not visibly changed. Thus
it is clear that the term bk/(im-xk)
value of the function w(w) when w is in the vicinity of Im[xk]. This

is the principal contributor to the

feature is illustrated further in Figures 7a-10a where the x's are the
values of the term b4/(im-x4) alone as « varies from 4.3 to 5.7 at steps
of 0.05.

In Table 1A, for example, twelve frequencies (in two columns) are
listed. The corresponding function values of w(w) are listed immediately
thereafter. These function values are indicated on the corresponding
graphs, Figures 7a and 7b, by the "boxes". From these twelve function
values, using the method of Section [I, the characteristic values Ak and

25
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coefficients bk are determined. The characteristic values and coefficient
computed from the given function values are listed in Table 1B. The
“radius of differences" is the square root of the sum of squares of the
real and imaginary parts of the differences of the last two successive
calculations of the characteristic values.

Table 1A also gives "truncated" values of the function w(w) at the
listed frequencies. Table 1C gives the characteristic values and
coefficients obtained from computations using these truncated values.
Thus Table 1C shows how much the lack of precision in the experimental
data affects the computations. Tables 2A-4C show the results as the
coefficient b4 is changed. As one would expect the method of Section 11
is not sensitive to changes in the coefficient bk’

Our second objective is to test the procedures described in Section III
for two close characteristic values. The data and results for this set
of problems is given in the Tables 5A-9D. The coefficient bk and
characteristic values Ak’ except for As, are the same throughout the set
of problems. The characteristic value g gets close to Mg by letting

Im[xs] take on the values 4.5, 4.3, 4.2, 4.1 and 4.05 successively.

In order to see the effect of AG tending to AS the graphs, Figures 12a-
15a and 12b-15b are collected in Figures 11a and 11b respectively.

One observes, in Figure 1la, that as A6 tends to As the "circle"
corresponding to AS deteriorates, diminishes and finally disappears. At
the same time the “"circle" corresponding to A6 distorts and expands and
eventually becomes nearly circular again when A6 is practically the
same as As. Similarly, the valley between the peaks associated with As
and xé (Figure 11b) disappears as AG tends to As and the two peaks become 1

a single high peak when AG is practically the same as As.

It is clear that the behavior just described depends upon the
coefficients b5 and b6‘ To illustrate the role of b5 and b6 envision
what takes place as AG tends to AS for the case b6 = 'bS’

26
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In Tables 5B-9B we give the results using the procedures described
in Sections II and III and the exact function values. In Tables 5C-9C
we give the results when the truncated function values were used. We
observe that with accurate data all coefficients bk are computed well.
With inaccurate data, the difference between the actual and computed
coefficients gets large particularly for the differences corresponding
to AS and AG respectively as AG tends to As.

Using the computed characteristic values and coefficients from
Table 9C we computed the function values at the given set of frequencies.
These computed function values are listed in Table 9D. Observe that the
computed function values in Table 9D and the truncated function values
in Table 9C agree very well. Observe also that graphically, in Figure 17,
the function values based on the computed coefficients from Table 9C are
indistinguishable from function values based on the exact characteristic
values and coefficient.

We believe the numerical experiments performed in Reference 1 and
this report show that the procedure, described in Section II of
Reference 1 and Sections II and III of this report, is a highly accurate
method for determining the complex characteristic values and associated
complex characteristic vectors of a 1ight, viscously damped linear system
from the responses to sinusoidal excitations. The method as presented
in Reference 1 was capable of handling well separated characteristic
values and characteristic values of multiplicity great than 1.

In Reference 1 we tentatively assumed that the characteristic values
could be regarded either as well separated or identical. However, we
were concerned that this assumption might not be realistic. Accordingly
we extended the method, Section III, so that it could handle the case of
two characteristic values which were too close for the well separated
procedure yet not close enough to be regarded as identical.

27
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Further numerical experiments should be performed to determine more
precisely when two characteristic values should no longer be regarded
as well separated but rather as close and when no longer as close but
jdentical. We need also to perform numerical experiments to determine
how many characteristic values the method can handle. It is also of
interest to determine the degree of damping at which the method is no
longer reliable.

28
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APPENDIX A
LINEAR SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS
Methods for determining vibration parameters are based on facts and
relations from the theory of linear systems of ordinary differential
equations with constant coefficients. These facts and relations are
well known, at least to the expert. In this appendix, it is our objective

to develop in a brief, yet complete fashion, these relations so that
they are readily accessible and acceptable.

Consider a second order system of differential equations
MX+CX+KX=f (A])
Here M, C and K denote real matrices of order m and x = x(t) and f = f(t)

are m-dimensional vector functions of t. The vector functions x(t) and
f(t) may have complex components.

The associated homogeneous equation
Mx + Cx + Kx = 0 (A2)

has nontrivial solutions of the form u exp(At) if and only if X satisfied
the characteristic equation

det[M\Z + CA + K] = 0 (A3)

and the vector u satisfies the condition

2

M + 0O +Klu=0 (A4)

Similarly, if a vector v satisfies the condition

5
M2+ ch+KIv=0 (AS)

then v exp(At) satisfies the transposed homogeneous equation
Wi+ CTx +Kx=0 (A6)
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Throughout this appendix the symbol v is reserved for quantities
associated with the transposed equation. We will refer to values of )
which satisfy the characteristic equation, Equation A3, as characteristic
values and the vectors u and v as corresponding (or associated) charac-
teristic vectors.

The characteristic equation is a polynomial equation in A. Since
the coefficients are real, the complex conjugate of any compiex root is
also a root. We suppose Equation A3 is of degree n = 2m and that all the
roots are complex with negative real part. We suppose also that if X is
a root of multiplicity p then the matrix [M>\2 + CA + K] is of rank m-p.

For convenience we index the roots of Equation A3 so that 0 < Im[x]] <
IM[\Z] . ;.Im[\m] and xm+k = N for k =1, ..., m. Let u, and Vi

denote characteristic vectors corresponding to A\, for any value of k < m.

k
That is, Uy and Vi satisfy the conditions expressed by Equations A4 and

n+k " uk and vm+k = vy are characteristic

vectors corresponding to xm+k = Ak.

A5 respectively. Then u

Orthogonality conditions are well known and convenient normalizing
relations are readily determined for first order systems of differential
equations. For these reasons we consider the first order system

i] - Xy F 0
(A7)
Mx

+ Kxy + Cx, = f
(4

2 1

which is a system equivalent to fquation Al. This system may be written

in block matrix form as
1oo] [ x o -1 {x] [o
+ ! = (A8)
o M| % K of|x f
and symbolically as

Ay + By = g (A9)
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One can readily verify ﬁkexp(Akt), where

T Y (AT0)

satisfies the homogeneous equation Ay + By = 0. Similarly, Jk exp(Akt)

T

¥ =

Vi

satisfies the transposed homogeneous equation AT} + BT

y = 0., The vectors
Uy and v, are characteristic vectors satisfying Equations A4 and A5
respectively.

From the equations A A G, + B U, = 0 and A.v'A + v'B = 0 it follows
ke Tk k A j

that
T T L
Akg A Ut vj B U = 0
AVAT +V B =0

ijg kK ik

On subtracting the second of these two equations from the first one
finds for j # k, if Aj # Ak that the characteristic vectors Gk and ;j
satisfy the orthogonality conditions

VA G

T A G, =0 and v} B3, =0 (A12)

For a characteristic value Ak of multiplicity p > 1, the characteristic

vectors can be determined in pairs Ups Vs Upgpo vk+], RN uk+p‘ vk+p

so that the orthogonality conditions expressed by Equations Al12 hold
whenever j # k.

For reasons which will be apparent shortly, we suppose the vectors
Gk and v, normalized so that

T A = (A13)

K}

a I FPN . K, S -y N e PP - Sl " » 1 ‘j
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then, it follows that

Yy B, T Ay (A14)
Let U denote the matrix whose columns are the characteristic vectors
Gk’ Thus ,
u =[G u,] (A15)
and similarly
V= [V] e Vn] (A16)

Also let A denote the diagonal matrix having the characteristic values
A1 caes
conditions we have

xn on the main diagonal. From the orthogonality and normalizing

VIAU = T and V'BU = -A (A17)

Let A, = Ae(t) denote the diagonal matrix having exp(A]L), ..
exp(xnt) for its diagonal elements. Set

Y(t) = UAe(t)

Then one recognizes that AY + BY = 0 and also that [AUA + BU] = 0. These
facts are useful in determining a particular solution of the inhomogeneous
equation Ay + By = g. Thus we set y(t) = Y(t)z(t) and substitute this
expression for y(t) into Equation A9 we find that

AYz = AUAei =g

Using VTAU = [ from Equation A17 we obtain as an expression for y(t)
t

y(t) = un (1) J[ A (v g() dr (A18)
0

It is clear that y(0) and easily verified that y(t) satisfies Equation A9.

In Equation A18, use Equations A15 and A16 to replace U and VT
respectively. Then use Equation A10 to replace the column vectors &k and
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Equation A1l to replace the row vectors VI. Lastly, use the right hand
side of Equation A8 to replace g. Thus the integrand of Equation A18

becomes
T T
epr]T 0 (-I/A])v ]K Vi 0
: T T
0 expA T (-1/xn)vnK Vo f()

Performing the indicated matrix-vector multiplications this
rewritten as the vector

r(expl]Z) v1Tf(1f

| (exp2) vpf(2) |

Multiplying this vector by the matrix UAe(t) Equation A18 can be

rewritten as the two vector equations
t

n
x](t) = Loy exp(Akt)'I exp(-ka)vl f(t)dt
k=1
0
t
n T
xz(t) = kE] Y exp(xkt) j. exp(-kkr)vk (t)dt
0

It follows that x](t) and x2(t) must satisfy Equation A7. From

Equation A7 i1(t) = xz(t). 1f we compute i‘(t) from Equation A19, we
find that

n
. T
X](t) = xz(t) + ki] Uka f(t)

33
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and it follows, since f(t) is arbitrary, that

z =0 (A21)

k=1
In a similar way, we-find, since x](t) must satisfy the condition
Mx + Cx + Kx = f, that

U Vi

T _ I (A22)

Using Equation All we can write Equation Al6 as

_KT 0 vl/x] - vn/ n
V= (A23)
0 I v] cen vn
Y then
A T
. v]/x] vi [-K 0 u1 Uy
VAU-:=

{ = 1 (A24)
Vl/x v 0 M AUy --o Apu :

In the same way we have y
IR .
| v/ 2 fo K Uy ..u

T i .
VBUS=
- [ (A25)
T K C

T . Y7 .- lnun
vn/>\n v

n
)
-

Equations A22, A24 and A25 show that the characteristic values A], cee
Am and appropriately normalized characteristic vectors Ups wons U and
Vis sees Vo determine the matrices M, C and K. Actually, Equations A22
and A25 determine M, C and K. The Equation A25 is a matrix equation of
order n = 2m. Other relations are available for determining the

matrices M, C and K.
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It follows from VIAU = I that AUV’ = I. Using this last equality

one can obtain the results expressed by Equations A21 and A22. With
Equation A21 and Equation A22 established in this second independent
manner, it is a simple task to verify that the time derivative of
Equation A19 is Equation A20. It is also readily verified that xl(t) as
given by Equatfon A19 satisfies Equation Al.

From Laplace transform theory we have for zero initfal conditions

Lix(t)} = [Ms? + Cs + K™V L{F(t)) (A26)
We also hava

t
L{[A Fy(t-1)Fy(c)dr} = £y(s) - fy(s) (A27)

where f](s) = L{F](t)} and fz(s) = L{Fz(t)}. Applying the formula
expressed by Equation A27 to Equation A19 we obtain

T
uv
Lix (1)} = £ XK (ge(e)) (Az8)
k=1 k
From Equations A26 and A28 we see that the transfer function
T
2 -1 Y
[Ms€ + Cs + K]™' = © == = H(s) A29
k=1 5 (hz9)

say.

Next we want to determine some particular solutions of Equation Al
for some simple vector functions f(t). Let éj denote the vector whose
jth component is 1 and all other components zero. Also let h(t) denote
the scalar function satisfying the conditions.

h(t) =0 fort <0

1 fort>1
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Set f(t) = e.h(t) and denote the response to ejh(t) by Hj(t). Replacing
f(t) in Equation Al19 by ejh(r) one immediately obtains for the step
response Hj(t)

. T
n j.v.e. nou
() = T Hrtexntyt) -k ——Tl (A30)

The impulse response Ij(t) is the derivative of the step response, that
is,
n

b
Ty ke exp (A t) (A31)

-_d =
1(6) = 55 () = T

Let fj(t) denote the jth component of the vector forcing function
f(t). Then f(t) can be written as

f(t) = egfy(t) + .- 4 e fn(t).

Replacing f(t) in Equation A19 with this expression, we obtain

Z expA, (t-1)u v e; f d
315 k' k (1)

From Equation A31 this formula for the response can be written as

m t
- (A32)
x(t) = J_El j Ij(t-T) fj(-r)dr

Next we take f(t) = r exp(iwt) where r denotes a real constant vector
and obtain from Equation Al9
n uv

k
x(t) = T +—
] k=1 1@ Ak

r

3

n ukvlr
exp(iwt) - kZ] i exp(i, t) (A33)

For complex A with negative real part, the second summation in Eq. A33
goes to zero as t becomes large. Hence T

nouvS
y exp(iut) = z] 1ur
k:

. exp(iwt) (A34)

js the steady state response to the harmonic excitation r exp(iwt).
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The steady state response to r exp(iwt) is readily obtained from
the steady state response to the sinusoidal excitation r sin wt. One
knows, or can readily show, that

[MD2 + CD + K] {Im[y exp(iwt)]} = Im [r exp(iwt)] = r sin wt (A35)

Now

Im[y exp(iwt)] = Re [y] sin wt + Im[y] cos wt (436)
and if x(t) denotes the steady state response to the r sin wt the system
of equations

Re[y] sin wty + Im(y] cos wty = x(t]) (A37)

Re[y] sin wt, + Im[y] cos wt, = x(tz)

is readily solved for Re[y] and Im[y] from the recorded values of x(t)
at t, and tz, provided sin wt] cos wt2 - €os mt] sin mtz £ 0,

From Equation A34

The matrix on the right hand side of this equation is called the
frequency response function. Observe that it differs from the transfer
function, Equation A29, only in the term iw in the denominator.

From Equation A38 we have

T
UkaY'

<t
]
®t ™3
'
+
3

k=1 -fw-)2 k=1 =-fw-)

and from this equation it is clear that

. n ukar
y = z - X (A39)
k=1 "Ry
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Consider next the undamped homogeneous system of equations
Mx + Kx = 0 (A40)
associated with Equation Al. We now suppose that M and K are symmetric
and that the positive definiteness condition satisfied. Then there are
values 0 < w, < ... < w, and corresponding real rectors u

LIRREE:
U satisfying the condition

[-of M+ K] uy = 0 (A1)

It is readily shown that the vectors Gk satisfy the orthogonality
conditions

~ ~ ~

u}M U = 0 and u} K uk =0 (A42)

We will not impose any particular normalization on the vector Gk at
this time.

Set

N

-irk exp(iukt)

(0% + €D + K] {u, exp(iut))

and

~

irk exp (—1wkt)

"

[MD2 + CD + K] {uk exp(-iwkt)}

On adding these two equations one obtains

A~

- - : 43
(MD2 + CD + K] {uk coswkt} =r s1nwkt (A43)
This equation simplifies to
-9 C U T Ty
for k =1, ..., m. This system in matrix form is
C[U] Um] -m] 0 [Y‘] e Y'm] (A44)
0 -W
m
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Equation A44 can be solved for C and we have

C=1[r ... r.3 [~ 01 [0 ... ul"!
1 m 1.. 1 m (A45)
0 -u
Set
; ~ - ~ -~ (A46)
} U=Tly ... u]
Because of the orthogonality conditions
. ) 0
AT -~
UMY = °. (A47)
0 a,
. A diagonal matrix with diagonal entries Ays cees which must be
h determined. Similarly
AT mzlal 0
. U'KU = '
: 0 2 (48)
’ Onm
Next for some value of w # w, we have
[MDZ + CD + K] y exp(iut) = r exp (iwt)
> From this equation one obtains, since we may suppose C is known
[<? M+ Kly = r - iuCy
Then
GT[_wZ M+ K]Ua’]y = GT(r - iwCy) = b say (A49)
) Set
z
1
U'1y =
z, .
4 39
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then using Equations A47 and A48 we can rewrite Equation A49 as the system
of equations
(wz - wz) b

A2k = O

for k=1, ..., m. Or, on solving for a, we have

a = bk/zk(wi - wz) (A50)

for k=1, ..., m.

If exp(iwt) is the steady state response to the harmonic excitation r
exp(iwt) then y and r satisfy the condition

[‘wZM + K+ 'le]y =r (A5'|)

This system of equations can be rewitten as a system of real equations

[-oM + K] Re[y] - oCIm[y] = r

(A52)
CwRe [y] + [-sz + K} Im[y] = 0
We have also from Equations A41 and A32
nouvor
y= .5 i&—ik = H(iw)r (AS3)
From this equation we have
Re[y] = Re[H{iw)]r
In[y] = Im[H(iw)]r (A54)

If we examine Equation A52 and A54 together we are able to observe
an important relation between the transfer function (or better the
frequency response function) of Equation 1 and the natural modes and
natural frequencies of the associated undamped system. Suppose w = wy is
a characteristic value of Re[H(iw)] and r is a corresponding characteristic
vector, that is

det[Re(Hiwk)] =0

40
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and
Re[y] = Re[H(imk)]r =0

Now the vector y determined from Equation A54 by r and Wy must satisfy
Equation A52 and, in particular, since y = i Im[y] it follows that

[-wi M+K]y/i=0

Hence y/i and y are characteristic vectors associated with the character-
istic value wy -

Conversely, if w = Wy and a real vector which we denote by Im[y]
satisfy the condition

[-u2 M+ K] Inly] = O,

- then from Equation A52 we infer Re[y] = 0 and r = - C Imly]. Since these
quantities must satisfy Equation A54, it follows in particular that r
satisfies the homogeneous equation Re[H(imk)] r = 0. Hence W satisfies
!. det[Re[H(imk)] = 0.
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APPENDIX B
INTERPOLATION WITH EXPONENTIAL FUNCTIONS

In this section we give the mathematical background and details of
some procedures for determining the "amplitudes" a, and the "complex
frequencies" Ak of a function x{t) of the form

n
(t) = = a,exp()r t)
X ceq KO K (81)

from the values of the function. The function x(t) may be either a
scalar or vector function of t and, accordingly, the a, denote either
scalar or vector constants. We consider first the case where x(t) and
the a are scalars.

<&
Set
r n = exp(ih) (82)
! ’ then for j = 0, ..., n, we have the system of (n + 1) equations
: noj (B3)
X(t + Jh) = kE] ﬂk akexp(xkt)
which can be written in matrix form as
[ x(t) - 1] 1]
x(t + h) - M - =Ny a]exp(k1t) =0 (84) H
n
Lx(t +nh) - ny ... 'y Lanexp(xntl

Now the relation expressed by Equation B4 holds if and only if the
coefficient matrix is singular, that is, the determinant of the coefficient

matrix is zero.
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Let Aj o denote the cofactor of the element x(t +jh). Expanding the
determinant of the coefficient matrix in terms of the elements of the

first column we obtain.

x(tenh) + (A /A ) x(t(n-1)h) + ... + (A /A 0) x(t) =0 (B5)

Hence, a function x(t) as given by Equation Bl satisfies an nth order
recursive relation or difference equation of the form given by

Equation BS5. If in the matrix of Equation B4, we replace x(t), ...,
x(t+nh) by 1, n..., n" respectively, we observe that the coefficients
An+1-k/An+1 are the elementary symmetric (root) functions pk(n], i nn).

n
= B6)
P m Mg ooty T g+ mpnp 4 0y g0y (
- (1D
Py = (-1) My --- Ny
Set
5 = AR (B7)
for j=1, ..., n and set
X5k = x(tj + (k-1)h) (B8)
for j=1, ..., nand k=1, ..., ntl. Thus, if we know the value of x(t)

at times tj+(k-1)h, then from Equation B5 we obtain the system of equations
Xqq o0 X c -X
1 In 1 1 n+l
. . . (89)
*nm1 o *nnm “n “Xn n+l

for the coefficients Cys wovs cn.

Suppose Equation B9 has been solved for the coefficients c7, cevs Cpo

We can determine next the complex frequencies Ak. First, one solves the
polynomial equation

LU c; =0 (810)
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for the roots M eees Npe

ne Setp = Inkl and 6, = arg (nk) where
0 < 6 < 2m then

e = exp[log o, + i(6, * 2jm)] o (s11)

and xk is given by the equation

hi, = log p, + i(ek + 2jm) (812)

It is clear from Equation B12 that A is not uniquely determined from -
However, in the practical situation the appropriate value of xk is
usually clear.

The only task remaining is the determination of the amplitudes a-
From the first n equations of the system given by Equation B3 we have

B U ’a1exp(x]t)' [ x(t) i
Ny e My azexp(xzt) x(t+h) (813)
.n?-] ees n:'1 anexp(knt) {x(t+(n-1)hl

It is clear that this linear system of equations is solvable for the
amplitudes s provided the coefficient matrix is nonsingular. However,
the particular form of the coefficient matrix lets one use a special
method for solving this Tinear system of equations. Let Ajk denote the
cofactor of the (j,k)th element of the Vandermonde determinant. By
Cramer's Rule

k-1

n n
= 14
ajexp(d;t) = (k§1 x(t+(k-l)h)Akj)/(k§] nk-la . (814)

J kJ)

Dividing both numerator and denominator of the right hand side of this
equation by Anj one observes that the ratios Akj/Anj are the elementary
symmetric (root) functions of the nk's, excluding n.. This observation
is the basis of the algorithm given in Reference 14 (page 275) for
computing the amplitudes aj. In order to see clearly how this algorithm
was obtained we need to make several more observations.

44




AFWAL-TR-30-3136

Set
f(n) = (n-n;) (n-n,)
n n-1 (B15)
=n +p]n + + pn
then the denominator
(B16)
n
k-1 df
L n; Ai’Mkn = dn In n;
k=1
f/(n-nj) = [f(n)-f(nj)]/(n—nj) =
- - - - - -3 n-2
(r]n 1+nn an+ " nng 2+r|g ]) + p](nn 2+nn nj+ R r]j ) (817)
n-3, n-4 n-3
+pp(n T ng L g )+ P
Collecting terms in like powers of n we obtain from Equation B17
£/(non ) = n-1 4 n-2 ? . n-3,, 3 2 n-4
/{n nJ) n +(PJ Pyin +(nJ+p1nj+D2)n +(nj+p]nj+pznj+p3)n 2818)

' +(”2—T+p1”gcz+pz“g_3 toeetr )
The coefficient of nk-] in Equation B18 is equal to the ratio Akj/Anj for
k=1, ..., n. Hence, if, in Equation B18, we replace nn-k by x(t+(n-k)h)
for k=1, ..., n and collect Tike terms in powers of Ny then we can express
ajexp(xjt), Equation B14, as the quotient of two polynomials evaluated
at nj. We have just described the numerator of this quotient. The
denominator is given by the derivative df/dn, evaluated at N This
completes the derivation of the algorithm given in Reference 14 (page 275).

It is clear that if x(t) is a vector function and the a, are vector
constants to be determined we could apply the algorithm described above to
determine the jth component of the ak's, for j=1, ..., m. That is, an
equation of the form of Equation B13 has to be solved for each component.
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Recently, (References 2-4) another method has been proposed for
determining the parameters occurring in Equation B1. Let us write
Equation B13 as

[ x(t) ) Ay a7 Tee(nt)]
x(t+h) = | any an,
(819)
L x(t+(n-1)h) ] ] a]n?'] o ann:']J | exp(2 t).]

Denote the column vector on the left hand side of Equation B19 by y(t),
the column vector on the right hand side by e(t) and the matrix by A.
The Equation B19 can now be written as

y(t) = Ae(t) (B20)
Let N denote the diagonal matrix whose diagonal elements are
Mys +evs Npe Then
e(t+h) = Ne(t) (821)
and
y(t+h) = A&e(t) (822)

If the matrix A is nonsingular, Equation B20 can be solved for e(t) and
we have

y(t+h) = ANA™Ty(t) (823)

One observes the Vandermonde determinant in the determinant of the matrix
in Equation B19. Hence, it is clear that A is nonsingular if the

M =wes Np all differ from one another and zero and akfo for all values
of k. Note that Equation B5 and Equation B23 are equivalent statements
of the same problem.

Suppose for n values of t, t] < ... < tn the vectors

¥y = ¥(ty) (B24)
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and
25 = y(tj+h) (825)

are known. From Equations B24 and B20 we obtain the matrix equation
- B26
[y; - ¥,) = Aley ... e,] (B26)

This equation can be written symbolically as

o = AE (827)
In a similar fashion we obtain from Equations B25 and B22
~ B28
y = ANE (828)
From these two equations we obtain
v o7 A = AN (829)
or, on setting B = ¢'1A
8 = 0B (830)
Let Uy (Gk) denote the kth column of A(B) then we can replace
Equations B29 and B30 by
y A=
Yo oy = MYk (B31)
and
4 = U B32
You = nou, (832)

for k=1, ...,n. Thus in the first method of this appendix the determi-
nation of the nk's was formulated as a problem in determining the roots
of a polynomial equation, Equation B10. In this second method, the nk's
are displayed as eigenvalues of the matrix W¢'] or of the generalized
eigenvalue problem, Equation B32. Of course, here too the determination
of the nk's could be reduced to the determination of the roots of a
polynomial equation.

Examination shows that the two methods use, or can use, exactly the

same data. Since the eigenvectors are not unique we have no assurance
that the first component of the vector satisfying Equation B31 is the
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ay of Equation B1. It frequently suffices to know the ay to within a
muitiplicative constant. Of course, once the nk's are known, the matrix

E is known. Hence, if E is invertible, we have from Equation B26 an
equation equivalent to Equation B13 and thus the ak's are determined also.

In the practical situation in which one encounters Equation B1, x(t)
and a, arem dimensional vectors and n = 2m. The Equation Bl can be

] written as
= ... a Je(t
Here [a] ... an], denotes the mxn matrix whose columns are the m ;
dimensional vectors aps and e(t) is the n dimensional column vector
whose jth component is exp(Ajt).
&
Again, setting y(t) = x(t+h) we have
y(t) = [ay ... a INe(t) (834)
' or <
y(t) = [nya; ... nnan]e(t) (835) %
Lastly setting z(t) = y(t+h), we have
2(t) = [n]a] ...—nnan]Ne(t) (836) |

In block form we have from Equations B33 and B35 |

x(t) a; ... a i
= 1 e(t) (B37) j

y(t) Ny -ee Npdp w
|

|

and from Equations B34 and B35

[;(t+h)] _ ay .. 3 e(t) (B38)
(t+h) N3, "‘_“nan

48




r

AFWAL-TR-80-3136

Denote the matrix in Equations B37 and B38 by A. If A is nonsingular
then Equation B37 can be solved for e{t) and we have

x(t+h) N x(t)
= ANA! (839)
y(t+h) y(t)
Thus, the n-dimensional vector function
x(t)
B40
y(t)

satisfies the system of difference relations given by Equation B39.
Equation B39 is of the same form as Equation B23. Hence, as we have
noted, the functions z(t) satisfying Equation B39 are of the form
uexp(it) where n = exp(Ah) satisfies the condition

det[ANA"-n1] = 0 (841)
and the vector u satisfies
[ANA™"enIdu = 0 (842)
That is,
TRLIT (843)

n is an eigenvalue and u is che corresponding eigenvector of the matrix
ANA™

The matrix ANA™' of the system Equation B39 is not known. If the
vectors x(t), x(t+h) and x(t+2h) are known for n values of t,
t] < ... < tn’ then, as above, we can determine the system matrix
ANA"' = yo=! and it remains to solve the eigenvalue, eigenvector problem,
either Equation B31 or Equation B32. It is clear that one immediately
obtains the eigenvectors satisfying Equation B31 from those satisfying
Equation B32. It is also clear that the eigenvectors so obtained are
not necessarily identical to the columns of the matrix A in Equation B37.
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We have described a procedure leading to an eigenvalue-eigenvector
problem for the determination of the complex frequencies when x(t) is a
scalar and also when x(t) is an m-vector and n = 2m. This same procedure
can be used when x(t) is a 2-dimensional vector, n is even and n ~ 4.

The details are so similar to those given above that we shall not repeat
them here.

Examination of the two methods of this appendix shows that they use, i
or can use, exactly the same data in the scalar case. When x(t) is an
m-dimensional vector, the first method requires 2n readings plus n
reading for each additional component. The second method required n2
readings to determine ¢ and n additional readings to determine ¥. Thus
when x(t) is an m-vector the two methods use essentially the same data
also. 1In a similar fashion we note that it takes 3n-2 readings to form
¢ and 2 additional readings to form ¥ when x(t) is a 2-dimensional vector.
Exactly the same amount of data is required by the first method.

1f, in Equation Bl, some of the coefficients a, are taken to be zero,
then it is clear that the determinant of the matrix ¢ vanishes. Or, in
other words, there are fewer a, and A to be determined than we have
allowed for., Thus, the vanishing of the determinant of ¢ is a test for
determining the number of terms in Equation Bl. Evaluating the determinant
of a@ matrix is usually avoided, if possible, and in numerical work a
computed zero is rather rare. Hence, the vanishing of the determinant
of ¢ is usually not a good test for determining the functional form of
x(t), Equation B1.

The process of determining the function x(t), Equation B1, is
analogous to interpolation with trigonometric polynomials, in the sense
that the coefficients are falsified by the higher harmonics. The number
of terms in Equation Bl is not specifically known. The situation may be
thought of as follows. Suppose

x(t) = g akexp(xkt) + z(t) (844)

k=1
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There is nothing which prevents one from forming the matrices ¢ and ¥

(or determining the coefficients Cp +vv5 Cps Equation B9, as described
above. However, it is clear that these quantities will be falsified by
the contribution of z(t). Equation B44 also indicates why the vanishing
of the determinant of ¢ is not a clear cut process. Taking a larger
number of terms in Equation B1 might possibly reduce the influence of z(t)
and a

on the parameters A of Equation B1.

k k

The columns of the matrix A defined by Equation B19 for the scalar
case and by Equation B37 for the case where the a arem dimensional
vectors, represent the eigenvectors which are to be determined. Note
that these eigenvectors have a somewhat restricted form. That is, for
the scalar case, the second entry in the k th column is Ny times the
first entry. Similarly, for the m dimensional case the last m entries
in the k th column are just the first m entries multiplied by e

This special form of the eigenvectors is the basis for the modal
confidence factor introduced in (Reference 5). Thus, how well the
eigenvalue and eigenvector solutions of Equation B31 satisfy the special
form determines the degree of confidence that the solutions so determined
represent the complex modes and frequencies of the structure., The modal
confidence factor can be used in addition to or as an alternative to the
ratio of successive determinants test.

We conclude this section with an examination of the matrices A
defined by Equation B37 and E defined by Equations B26 and B27. If
tj =ty 4 (j-1)h for j =2, ..., n then the matrix E can be written as

E= [exppt 1 ny e n?']
. : . -
expknt ) n, e n
Clearly E is nonsingular if the Nys wees My are all different from one
another, Now N, = exp (Akh). Let us write Ao Tyt isk, and suppose,

for some k and j#k, ”k/”j = exp h(xk-xj) = 1.
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This last equality will hold if a, = ay and lh(Bk-Bj)l = 2n%. Thus
even though the A,, ... A are all different there is the possibility of
a sampling rate for which the matrix E is singular. It seems readily
apparent that there should be no difficulty in choosing a sampling rate
which will insure that the matrix E is nonsingular.

The columns of the matrix A, Equation B37, represent the eigen-
vectors associated with a linear system of first order difference
equations. Accordingly the matrix A should be nonsingular. The
function x(t), Equation B33, perhaps more precisely, should be written
as x(t) = [c] ay vees cnan]e(t). In Equation B33 the coefficients c, are
included in the symbol ay. Thus the function x(t) is a linear combination
of the eigenfunctions akeprkt. It is clear that in a particular
experiment one or more of the eigenfrequencies Ak need not be excited.
That is, those columns of A corresponding to the nonexcited Ak are
columns of zeros.

From the point of view of determining the matrix A and the eigen-
frequencies A it follows from our remarks that the set of sampled values
of the function x{t) may not be adequate for determining all the
eigenvectors and frequencies. On the other hand there is the possibility
that one has allowed for more eigenfrequencies in some selected frequency
range than are physically present.

The difficulties noted were recognized by S. R. Ibrahim, the principal

author of the method being discussed, and were treated in his papers
(References 3 and 4).
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APPENDIX C
SOME MATRIX EIGENVALUE-~EIGENVECTOR CONSIDERATIONS

In this section we present and examine material which we feel is the
basis for the method of Wittmeyer (References 6 and 7). We begin by
considering the equation

[-mz A+Bly=r (c1)

A and B denote symmetric matrices of order m. The matrix A is real
while B is generally complex. An equation of this form represents the
dynamic equation for a system with m degrees of freedom and structural

damping.

The associated eigenvalue problem is

- [-AA+Blu=0 (c2)
We suppose there are m eigenvalues As wees xm and associated eigen-
. vectors Uy, ..., U. From Equation A12 we know the eigenvectors
q ) satisfy the orthogonality conditions
Tau, = Toy = (c3)
ujAuk 0, uJ.Buk =0
whenever j # k. Also we suppose the eigenvectors normalized so that
T
= 1
uAu, = m (rea ) (c4)
~.a
then
Toy = (c5)
ukBuk Akmk
For given r and real mz # Ak for all k, Equation C1 is solvable
for y. The solution y is given by the formula
m
2
y= ¢ ukuzr/mk(xk - w) (c6)
k=1
It follows that
' - m 2 (c7
2 A+ BT = T wul/m Oy - ) )
k=1
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We take as our first task the determination of the efgenvalues Ak
and their corresponding eigenvectors U - In the practical situation

the known data are the values assigned to w and the excitation vector r,
and the observed responses y. However, for the present, we suppose the
matrices A and B are known also. The starting point for the determination
of the eigenvalues and eigenvectors is the observation that for an
excitation vector r = rj satisfying the condition

T

ukrj =0 (c8)

for all k # j and for any mz # Xk’ for all k, the solution y = yj is

T 2 (c9)
vy = uzlugrydimiQy - o7

That is, y. differs from the eigenvector us by the scalar factor
T 2
rofmo(x, - .
quJ/mJ( jou )
It is rather unlikely that an r such as rj is known. However, if

Xj is well separated from the A , for k # j and if wz is "close" to Aj,

k’
it is clear from Equation C6 that uj is the principal contributor to the
value of y. Thus for m2 close to xj we may suppose the initial gquess

of r for r; expressed in the form

m
Fe ot oo (c10)
k=1

and in particular o5 # 0. Then by Equation C6, the corresponding y is

kPl

m

- -2 (c1)
y = kE] pkuk/()\k w )
If the matrix A were known, we could iterate on the two operations
represented by Equations C10 and C11. That is, we take

(1), T o2 (c12)
r = Ay = E pkAuk/(Ak w")
k=1

then

m
y(M . I o U/ (0 - W22 (C13)
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and so on to obtain

(n) _ 7 _2\n¥
y = E pkuk/(xk w ) (Cl4)
k=1
It is clear from Equation C14 that if for each value of n, y(") is
normalized then

(n) - Const. u, (€15)

y" - Yj j

Thus for n sufficiently large, we will have

r(q) = ij(n) = ngu.

J J
then from this rj(") we obtain
~ 16)
(n+1) _ 2 (c
Y P3uy/ Oy = %)
and from r(n;]) = Ay(n;]) we obtain
(n+2) . © _ 232 (€17)
Yy j S QJUJ/(;\J w”)

We have immediately from the ratio of the vth component yj(n+]) to the

vth component of yj(n+1); that is

(n+1) (n+2), _ 2 (C18)
by A/l T =y -

and so A, is known also. This is one way in which the eigenvectors uj

and the corresponding eigenvalues Aj can be determined.

We are going to describe now yet another way for determining the
eigenvector uj and the corresponding Aj. A given vector y may be
represented as a linear combination of the eigenvectors u- Thus

m
y= I
k=1

My (C19)
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Then we readily establish that

rs= [-mz A+Bly
(c20)
m
= I

2
n, (A, -w") Au
k=1 k'7k k

( )For this second method we start with an initial excitation vector
0

r and two frequencies, m2 and &2 close to Aj. Again supposing r(o)

represented in the form

r(o) = T pkAuk

we have

y(o) = [-wz A+ B]-] r(o)

m
. 2 (c21)
=z o U/ (A -0%)
k=1
by Equation C6. Take
w0 = ra? a s 81 41O
m A - B (c22)
= £ p, —% au
k=1 k Ak - w2 k
by Equation C20. Now take
(1) (0) _ (0)
(c23)
= l; Qz_—--.w—z pkauk
kel A - o

Considering the computations indicated by Equations C21-C23 as an
iteration step, we have after (n+1) steps

m @2 - A" c24
y(n) N W T P (c24)

k=1 (Xk - w)
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fashion as above, Equation C18.
Equation C25 is not satisfied.

In the methods discussed in

constant vector rj

- Thus if we excite with r, and frequency w. close to A, we obtain
J J J
T 2
o= (s rus/me(h - w, (c2e6)
¥y = (ugirylug/msay - wy)
l 4 Similarly, if we excited with the same rj and a frequency &j we obtain
veo= (u e dua/m(rs - w %) (c27)
J J )y 1 j
From Equations C26 and C27 we obtain
’ Vi ¥ O - a0 -0 =y - oy, = 0 (c28)
NI B N J J 7
Now suppose we have linearly independent vectors L and b and that
. = ar, + br
57 %aT b (C29)
It follows, because of Equat1on C6, that the excitation vectors and
frequenc1es e wJ, hs w and "o w will determine response vectors
Yao Vs y , and Yp respectlvely It follows also, from Equation C29, that
. = ay_+ by
3T M (€30)
Y; = ay, * byy
57
-

will probably be required with each iteration step.
by assuming Equation C25 held are not altered however.

assumed that the eigenvalues are well separated.
case of two close eigenvalues, say Aj
satisfying the condition u

If the Ak are well separated and if
~2 2
W - w _

2 = ]
A: - w (c25)
J
]
then obviously y(n) -+ const. uj and A, can be determined in the same

In general, the equality expressed by
In this event some normalization of y n

The results obtained

this appendix up to this point we have
Now we consider the
and X We consider, again, a

=0 for all k # j.

j+
T
k'

-
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From Equation C28 we have

Y-

+ .
i

from which we have finally

T T ~ A
ry (s W)+ op|ra (D Yy

T
"b

the relation

Ly,> ¥pd [a

r T
b
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APPENDIX D
DETERMINATION OF MASS, DAMPING AND STIFFNESS MATRICES

In this section we want to consider the problem of determining the
mass, damping and stiffness matrices directly from experimental data.
However, first, for completeness and understanding we examine the
problem of solving systems of linear equations, the idea of a generalized
solution and of a pseudo or generalized inverse.

Let A denote a real symmetric matrix of order m. For each such
matrix A there is an associated set of m real numbers, A], ..., A_and

m

a linearly independent set of vectors Ups «ons U which satisfy the

conditions

Auk = Xkuk
(D1)
T, _ T
ujh = As;
and
uJuk = djk
If we set
= 2
U= [y um] (D2)
then clearly
UTU = ] = UUT (D3)
and the matrix A can be written in the form
A=t (D4)

where A is a diagonal matrix with the Ak’s along the main diagonal.

The properties of the matrix A as an operator are readily apparent
when A is expressed in dyadic form. Thus, if we consider Ax, then we
obtain from Equation D4 the following representation for the matrix A

- T T (D5)
A= x]u]u] + ... ¢ Amumum
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From Equation DS it is clear that the range of A is the space spanned by
those vectors Uy for which Ak # 0. It is clear also that A is 1-1 on
the range of A. Hence, if the range and domain of A are the same, that
# 0 for all k, then A exists and

is, 1f Ak
-1 _ T T D6
AT = (/A uguy + Ll 4 (1/km)u]u] (D6)
Let N] denote the set of values of k for which Ak # 0 and N0 the
set of values of k for which A, = 0. From our remarks above, Ax = b

k
has a "strict" solution if and only if b lies in the range of A. Now

b lies in the range of A if and only if

ub = 0 (07)

for all k in NO' Thus if b satisfies these solvability conditions then

a solution to Ax = b is given by

T
x = & (1/x )u.u.b
keN, k’“k k (D8)
If we set
y=x+ I cCpu
keN, © ¥ (D9)
then Ay = b also and
yll > il (510)
Even if b does not satisfy the solvability conditions, we can
still compute an x by means of Equation D8. Then
Ax = % ukuzb (D11)
keN]
and
(D12)
b-Ax= I ukukb
keN0
60




ey

AFWAL-TR-80-3136

Then for any y whatsoever

b-Ay= I cu + I ukulb (D13)
keN keN
1 0 ‘
It follows from Equation D12 and D13 that
[1b - Ayl > b - Ax]] (D14)
Set
Al s an ey
keN] (D15)
AI is called the generalized or pseudo inverse of A. MWe have seen that
if A, s not zero for any value of k then Al = a7'. 1 the equation

Ax = b has solutions then x = AIb is the solution of least magnitude,

- Equation D10. On the other hand, if Ax = b has no solutions then x = AIb
satisfies the equation Ax = b as well as or better than any other vector y
(Equation D14).

We have characterized the generalized inverse for a real symmetric
matrix A. Next we want to characterize the generalized inverse of an
arbitrary real (m x n) matrix A, where m > n, and of its transpose AT.

To achieve our purpose we consider the matrix ATA.

Now the matrix ATA is real symmetric and of order n. Hence there

are real eigenvalues E], cees En and a complete orthonormal set of n
dimensional eigenvectors Ups wees U It follows from the equation
T, T _ T _

| that £, > 0. Set ) = /g, > 0 and set
' v, = (VX2 )Au,, if A, #0
i Vi = Akuk =0
| - 2
f if \, = 0. One readily shows that the v/, for k in N;, constitute a i

set of orthonormal m - dimensional vectors.
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We obtain from Equation D17, regardless of the value of Ak’

Alug,eees ul = Dvps oeny v I (D18)

1

From this equation we infer that A has a representation

A= L Akvkul
keN] (D19)
then, as above, we take
Al s v
keN, (D20)
We have from Equation D19 that
T T
A = T AuVv
KeN, k'k 'k (p21)
and hence
T} T (D22)
(A') = I (1/Ak) Vi Uy
keN}

In a manner similar to the above one can obtain results of the same

nature for complex matrices.

We now describe a rather simple and obvious approach for determining
the mass, damping and stiffness matrices. In general this procedure
fails in practical situations and hence is really no method.

The steady state response of the system of equations Mx + Cx + Kx = f
to a harmonic excitation f(t) = r exp (iw]t), r a constant vector, is of
the form x{t) =y exp(iw]t) where y is a constant vector. If for k =1,

.., m we take r equal to the unit Cartesian coordinate vectors
respectively we obtain the matrix eguation

[-w]Z M+ K+ iw]C] [y], cees ym] =1 (p23)
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Since wy is not a characteristic value we can infer that the matrix
[y], cees ym] is nonsingular. It follows then from Equation D23 that

-1
-w12 M+ K = Relyps +vns Y (D24)

and

-1
w]C = Im[y], cees ym] (D25)

If we repeated the process for w = w, then we would have another equation
of the form of Equation D24, say

-wg M+ K= Re[z], cees zm]'] (D26)

The Equation D25 gives the damping matrix C and Equations D24 and D26
determine the mass and stiffness matrices. It comes as somewhat of a
surprise that the M, C and K determined by this method are not very good.
0f course, one immediately concludes that the matrices [y], cees ym] and
[z], cees zm] must be 11 conditioned. If one looks at Equation A34 or
Fquation A38 of Appendix A the reason for the i1l conditioning becomes
apparent. Thus w1 wil) be close to Aj say and for k =1, ..., m the
Yk will have nearly the same direction, as the modal vector uj. This
observation coupled with the Timited accuracy of experimental data
explains the poor results obtained by this method.

It is clear that one can obtain a better set of spanning vectors
[y], ey ym] by a judicious choice of frequencies, s vees W
However, the resulting set of equations are more complicated. This
method was discussed recently in Reference 8 and we want to examine the

method here.
In Reference 8 it was assumed that the mass matrix M was known. It

is instructive to consider first that all three matrices M, C and K are

unknown.
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Let Yy exp (imkt) denote the steady state response to the harmonic
excitation " exp (iwkt), " real. We have then the equation

2 . _ (p27)
-kayk + Kyk + 1kayk e
Set Y = Yrk + ink. Then Equation D27 can be rewritten as two real
eguations
2 -
ME-wpyp) + Ky * Clowyp) =y
(028)

2 )
Moy i) + Ky + Clayygd = 0

Now let us suppose m, the order of the matrices M, C and K is even
and set p = 3m/2. Also, set

T_p 2T T T
i = Lodpee Yree 91k
(n29)

T . 2T T \
Yp+k © Cowiee Y1k “rk?

For k=1, ..., p we have then the system of equations

[M K C][Q], cees Y Ypipr oo yzp] = [r}, s Tp 0...0] (D30)

where [M K C] is anm x 3 m matrix, [y ... §2p] is 3m x 3m and [r] e T
0 ... 0] ismx 3m. In view of our remarks above on generalized inverses

we may write

-~

MKC]-= [r] .. Tp O ... 0][y1 e yZpJ-]

where if [9] ] is not strictly invertible, then [9, cee §2p]']

- }2
p N -
denotes the appropriate generalized inverse of [y] ces yzp].

Let us observe that if any row of the matrix [r] ...r_0...0]
consists entirely of zeros then the same row of the matrix [M K C] will
have only zeros. It follows that the F1s «oos rp should span an m
dimensional space. Alternatively, it follows that the system determined
by the matrices M, C and K should be excited at least once at each station,
if we are to avoid a row of 2eros in the matrices M, C and K.
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For the case where the matrices M, C and K are of order m (i.e. for
a true m degree of freedom system) it is possible to choose the amplitudes
" and the frequencies w, SO that the matrix [§], cees 92p] has a strict
inverse. That is, in principle it is possible to recover the matrices M,
C and K from experiments. For the practical case, however, many of the
points at which one observes the response to an excitation are not
suitable points for exciting the structure.

For the reasons just mentioned determining the matrices M, C and K
by the method represented by Equation D31 has very limited applicability.
The situation is quite different if the mass matrix M is known. In this

case set
AT _ ¢ T T
Y = Dre o
(D32)
AT T T
Ymek = DI @YRid
and
ro=or, + sz
k- "k T YRk
a _ 2
Tmek = M1k
Then for k=1, ..., m we have the system of equations for the m x 2m
matrix [K C]
[K c][.y"’ L ] .yzm] = [r'ls e sy rzm] (033)

The vector "y in the expression r t wiMyRk can be the same vector for
all values of k. That is, if the matrix M is known then exciting the
system at a single well chosen station with a set of well chosen

frequencies w;, ..., w  the matrix [y], cees yZm] will be strictly

invertible when the eigenvalues X, are well separated.

k

If for some value of k, Ak is an eigenvalue of multiplicity greater
than 1 then it is clear from Equation A38 that the matrix [91, "'§2m]’
obtained by exciting the system at a single point, will be singular.
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k Suppose the eigenvalue Ak is of multiplicity p and for simplicity
suppose also that Ak is the only multiple eigenvalue. In this case we
need p suitable points at which to excite the system. (Even though p
excitation points are required, the system is excited at only one point

at a time.) Then for near resonance frequencies Wys e wm-p+1

we
should, at least in principle, obtain a matrix [§1, cees §2m] which is |
strictly invertible. For the frequency Wy which is close to the

{ multiple eigenvalue X the system should be excited at each of the

p excitation points, one point at a time.

Thus corresponding to each multiple eigenvalue we need a set of
excitation points equal in number to the multiplicity of the eigenvalue.
The same excitation points, if suitable, may be used for different

eigenvalues. We believe a similar procedure shoud be followed for close
eigenvalues also.

~a set Y, = [YRl’ et YRM]’ Yy = [Yll’ - YIM]’ R = [r], cen rm] and
let 0 denote the diagonal matrix with diagonal elements Wy for k=1, ..., m.
Then Equation D33 can be written in block matrix form as

2

R + MY Q

Ky, - CY.Q R

R )
(D34)

MY %

KY, + CY.Q I

I R

If we multiply Equations D34 (on the left) by M we obtain a system of
equations for the transformed stiffness matrix K* = M K and damping

) -1
matrix C* = M 'C, namely

K*YR - C*YIQ - R* + YRQ (D35)

K*YI + *CYRQ YIQZ
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If, for example, we multiply the second of the Equations D35 on the

right by YI ]YR and subtract the first equation therefrom we obtain

1 2

SR - YRQZ (D36)

* - =
C [YRQYI YR + YIQ] Y0
Once this equation is solved for C* the value so obtained can be used
in either of the Equations D35 to determine K*. A procedure of this kind
is probably preferable for determining the matrices K and C or their
transforms K* and C*, to solving Equation D33 for the matrix [K C], for

example.

We have examined the method (Reference 8) primarily from the point of
view of an evenly determined system. If the systems Equations D33,
Equation D34 or Equations D35 were over or under determined then the
methods described at the beginning of this appendix could be used to
determine matrices K(K*) and C(C*). It should be clear from our remarks
above that even though the number of experiments exceeds the number of
unknowns we do not have, necessarily, an over determined system. Once
the matrices K(K*) and C(C*) are determined one can calculate other
quantities of interest as described in Reference 8.
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Figure 1. An Example of an Element of the Frengﬁcy
Response Function Matrix

Graph in a comnlex plane of the function
6 - -
w(w) = £(w) + infw) = I [b,/(iw-3,) + by /(iw-,)
k=1 k
The characteristic values Ak and the coefficients bk are aiven in

Table 1A. The boxes are the values of w(w) for the frequencies listed

in Table 1A.
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Figure 2. Graph of the Magnitude of w(w)
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EW?Arg [w(w)] M
s y4
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Yy 8 12
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]
Figure 3. Graph of the Argument of w(w)
]
! Ain
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v
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Figure 4. ?raph in)the Complex Plane of £(w) + in(w) = w(w) - b4/
fw - A
4
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b4 = (0.866025404 + 0.5i

b4 = -0.866025404 - 0.5i

b4 = 0.866025404 - 0.5i

by

-0.866025404 + 0.5i

Figure 6a. Graphs of w(w) for Four Values of b,
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b4 = 0.866025404 - 0.5i
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b4 = -0.866025404 + 0.5i

Figure 6b. Graphs of |w(w)| for the Functions w(w) of Figure 6a
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by = 0.866025404 + 0.5i
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by = -0.866025404 - 0.5i
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TABLE 1A

DEFINING PARAMETERS, FUNCTION VALUES AND TRUNCATED VALUES
b, = 0.866025404 + 0.5i

4
|
!
CHRACTERISTIC VLLES ‘
3
k
-1 750990000681 1. 200000900E +00 -8, 500000000€ 62 3. 00009000E+60
-1, 250000000681 4. BO0PRAGNGE +00 -1, 62000000E-01 5. 600PRB00RE 09
-3. 0009000%E-81 9. GBOARAAPIE +90 -2 890000000E 91 1. 100099600E +01
COEFFICIENTS
-1, 73648179001 9, B4G77S30E-01 3. 420001430601 9. 396926210681
9 396926240661 =3, 420201430E-81 8 660254040€-81 5. B00RBARRE-61
7. 66B444420E 01 -6, 427876109681 -9, 396926210681 3. 420281430681
<& FREQUENCIES Yg+p
1. 600090000400 1. 30000000 +00
2 990000000€ +00 3. 109090009 +99
3. S0000000E 400 4, 1000000NE +00
: 4. 780000000E +00 5. 2000900006408
| 8. 99A00R0E +00 9. 30000990E +08
' 1. 890090000 +01 1. 120099960 +01
FUNCTION VALUES TRUNCATED VALUES
4. 2927385206499 2 254750776E 400 ~4. 290000000 +00 2 2500000006409
-3 349136945498 7. 62776327%+08 3. 7400000006 400 7. 620000000€ 400
4. 309415696E 490 2. 7519331306400 4. 390090000E +00 2 750000000€+00
-2 33935993601 1. 165997917E+90 -2 300900909E-01 1. 160000000 +60
-1, 66995B191E+09 -3, 623276055+90 -1 660000000€+60 -3, 620000000€+60
~4. 745254280€+00 5. 2232000966 -01. ~4. 710800996 +08 -5. 20090090001
5. 997219243681 5, 873763837E+00 5. 990009000E 01 5. 870009000€+60
7. 614061425400 3. 8421183366460 7. 610000009 +00 3. G40000000E +60
3. 77M4046S1E W0 ~4. §98519621£+90 3. 7700000006409 ~4. 60990900E+00
4. 6389313426+09 -3, 6295673626400 4. 6200000006 499 -3, 8200600006 +99
-2 44041139%E+09 -7. 779925282 -01. -2 440000000609 7. 70990000001
-1 714513046E 400 3 169627699 +00 -1 7100800996 +09 3. 160000000€ +90
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TABLE 18

NUMBER OF [TERATIONS= 12
RADIUS OF DIFFERENCES 3. 641182648688

COMPUTED CHARACTERISTIC YALUES
A

L 749999900 1 2000000050
-4 25000004001 3. 999999996400
~2 999999979 -9 9. POOPPOOIE 06
CHARACTERISTIC YALUE DIFFERENCES
@ -1, 935009000E 59 ¥
4. 993090000 -89 1 96000000E -9
: -2 €99900000E -99 -3, 6400000009
COMPUTED COFFFICIENTS
k
| -1 736481367691 9, 84887753901
9. 396926567E-81 -3, 426201383601
=7, 66344444581 6. 427875693 -
COEFFICTENT DIFFERENCES
~4. 129100000608 -8, S000RRAME-10
-3 568800000E 68 4. 219000000 -09
9 77000000018 -2 671700000608
1
]
-«
75

-8. 500800062t -62
-1 609000038E-81
-2 00000081251

2 290000000E-11
1 226900000 -09

3. 420201700E-81
8. 668254162E-61
-9 39692626981

COMPUTED DEFINING PARAMETERS FROM "EXACT" FUNCTION VALUES

3. 0000800A3E +08
1. 100000906 +61

-2 630080000€ -89
4. 490000006 -89
4. B0000000RE-10

9. 39692613501
5. 8800001 00€-01
3 420201494681

7. 52400800009
-1 88210090088
-6. BR9PARABRE-B9
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TABLE 1C

COMPUTED DEFINING PARAMETERS FROM TRUNCATED FUNCTION VALUES

NUNBER OF ITERATIONS= 12

RADIUS OF DIFFERENCES

COMPUTED CHARACTERISTIC VRLUES
o rsoorEe K

3 620600949£-08

1 200003610E+00 -8, 59724585502 3 000099041E+00
-1 24847924301 3. 999900167€+00 -9. 981416287E-02 3. 098273706E+00
-2 968741876E-01 9. 091500654E +60 -1 999952624E-04 1 999947906E+81
CHARACTERISTIC YALUE DIFFERENCES
2 927872500E-04 ~3. 610310000E-06 7. 245855850685 =9. 904855000 -5
-1 820757180E-84 9. 98927600095 -1 858971200€-84 -2 737063000E-04
-1 1268812368¢-03 ~1 580880620663 -4. 797560000E-86 S. 2191530006 -84
COMPUTED COEFFICIENTS b
k
-1 744831047E-81 9. 84526832796 -04 3. 4265840375 -84 9. 389229542691
9. 375117004E-04 ~3. 482454944 -0 8 642485451E-01 4. 9745611621
~7. 652318548 ~01 ~6. 376485929E-01 9. 386066391E-81 3. 396878933681
COEFFICIENT DIFFERENCES
8. 349266750604 2 79425094004 -6. 382607320E-04 7. 696669620E-04
2 180929504E-03 -1 77464864903 1 784858060683 2 543883813¢-43
-8, 125881640604 ~5. 14764767 3E-63 -1 883961674E-63 2. 4130497206-63
76
— . . S -
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Graph of w(w), Coefficient b, = 0.866025404 + 0.51
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CHARACTERISTIC VALUES

COEFF ICIENTS

~1 73648178801
9. 39692624081
~7. 668444430601

FREQUENCIES “

1 982000000 +06
2. 999090000 +08
3. 800000009t +08
4. 700000000 +08
8. 900000PARE +00
1. 890680006E +01

FUNCTION VALUES

~3. 876274289E+99
=2 747461794E+90
~a 5. 250623797E+08
2 869146729E+00
-1 854261256E +00
-4, 82180654 3E+08
1. 828485094E+00
8. 262361200€+09
4. 984842467E +00
1 369611363E-81
-2 682917172E+08
-1 814035377 +08

TABLE 2A

b

1 200800086¢ +60
4. 0BBRONROE +00
9. 900POVOORE +08

9. 848077930E-61

-3. 420001430601

-6. 427876100E-61
(x)6+p

1. 30000000GE +00

2. 248261659E+08
7. 6B6748895E +00
2. 684258769E+00
1. 678606168E-01
~3. 62932681 7E+080
-3, 247971842¢-01
5. 968968458E+00
3. 816817954E +00
~5. 8192624@3E+08
5. 819626286E +08
~7. 829869361E-01
3. 167407943E+00

79

~8. S00000000E-62
~1. 90BAAAAARE -1
~2. 900000000t -81

3. 428201430601
-9, 396326200681

DEFINING PARAMETERS. FUNCTION VALUES AND TRUNCATED VALUES
= (0.866025404 - 0.5i

3. 000GRRAREE+90
1 109999900E+01

3 396926210601
3. 428201439601

TRUNCATED VALUES

~3. 870000000F +00
-2 740000000E+20
3. 250000000 +99
2 960000000 +00
-1 850000000€+00
~4. 820000000 +00

2 240000000€ +60
7. 600000000E +08
2 639900000¢+08
1 6OR000000E-81
-3. 620000000€+0
-3, 200000000E 01
3. 0620000006 +08
3. 510000000t +08
-5. 810000000E +90
-5. 819000008k +00
~7. 900000000E-01
3. 1600000006 +90
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NUVEER OF ITERATIONS= 11

RADIUS OF DIFFERENCES

COMPUTED CHARACTERISTIC VALUES
-1 749999984601 M

TABLE 28

4. 889709856 -08

1 20000000¢E +00
-1 250000044E-01 3. 999999997E+00
-2 999999964E-81 9. 0PO000OOJE+00
CHARACTERISTIC VALUE DIFFERENCES
-1 619800080E-99 -5. 530000000E-99
4. 434000000609 2 708009000E-89
-1 682000000E-99 -3. 960000000€-09
COMPUTED COEFFICIENTS b
k
-1 736481333c-01 9. 848077910E-01
9.396926618E-01 -3, 420201343801
-7. 660444465E-01 -6. 427875892601
COEFFICIENT DIFFERENCES
—4. 46590000008 1 9710600600c-89
-4. 981860099E-08 -8, 747000000€-99
3. 549000000c-89 -2 879600000E-08

-8. 500000020662
9. 939999700-82
~2 00000081 3E-81

2 792000000€-16
-2 9970000008E-89
1. 311000000¢-89

3. 420201 76201
8. 6602541 4E-01
-9. 396926273c-01

-3. 318500000€-0¢
-1 139060009E-98
6. 317000000E-09

COMPUTED DEFINING PARAMETERS FROM "EXACT" FUNCTION VALUES

2 GO00000I3E+0
1. 100000000E+@1
-3, 190000000609

3. 960000000E-89
-6. 000000000c-19

9, 296526146501
2, 428204 S03E-01

6. 4410000006-29
-2 166600000E-08
~7. 265000000E-09
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TABLE 2C

COMPUTED DEFINING PARAMETERS FROM TRUNCATED FUNCTION VALUES

NUMBER OF ITERATIONS= 11

RADIUS OF DIFFERENCES 4. 11221 7301E-88
COMPUTED CHARACTERISTIC VALUES
A
-1 749889211£-01 k 1 199993165E+00
-1 252792343E-61 3. 999798986E+00
-3. BB1535103E-81 9. 090694840E+00
CHARACTERISTIC VALUE DIFFERENCES
-1 987885100E-05 6. 894740000E-06
2 792343460604 2 916924600E-04
1. 535103240€-04 -6. 949483606€-04
COMPUTED COEFFICIENTS b
k
-1 744102864E-81 9. 824542212681
9. 482548961£-01 -3. 413368353€-61
-7. 66265896561 -6. 398903351E-01
COEFFICIENT DIFFERENCES
7. 621883796E-04 2 653531 781E-03
-3, 614751220604 -6. 833876510604
2 214534740E-04 -2. 89727488783

81

-8. 499958878€-82
=9. 979799277E-82
-2 99061537001

-4, 1121570006 -07
-2. 920072310E-04
6. 153699600605

3. 428315832¢-61
8. 627195752601
-9, 39212293381

-8. 114481530E-04
3. 385828779€-43
-4, 893276640E-04

3. 0008949¢68E+00
5. 0081 77949E+00
1 099947454E+81

-9. 496827008€-85
=1 77947 400E-04
5. 24552000604

9. 385152656€-61
~4. 56946164961
3 483523720€-81

1 17735294E-83
-1 853815676€-63
1. 6677799086E-83
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TABLE 3A

DEFINING PARAMETERS, FUNCTION VALUES AND TRUNCATED VALUES
b, = -0.866025404 - 0.5i

4
CHRACTERISTIC WLES
K

-1 750900000691 1. 200000000E+00
-1 250000000E-21 4. 0OA0ADAROE +09
: -3, 9A0BA0R0RE-B1 9. 9A00AAAAOE +00

COEFFICIENTS b

k
-1 736481700601 9. §48077530E-81
9, 3969262106-01 -3, 420201439681
< -7, 660444438601 -6, 427876108601
L FREQUENCIES w W6
1. 0900B0AAGE+09 1 300000000E +00
2 990000000E +08 3. 100000009 +00
’ 3. 5000PA0AGE +00 4. 109990000€ +00
‘ ) 4. 700000000E +00 S. 200990000E +08
' 8. 990000R0E+00 9. 3500G00R0E +00
1 999909090E+01 1. 120000000F +01
FUNCTION VALUES
-3. 894982761E+00 2 1841344206408
-2 799423297E+08 7. G2032641E+08
S, 1269356706+00 1 447635953E+00
1 135255274€+09 -4, 850549945E+00
-1 866537767E+00 -3, B6A993499E+09
-4, B27465934E+00 -1 227030564E-01
1 0114795396+00 4 876067761E+00
8, 211875056E+00 3. 120734360€+09
4, 774525416E+09 -6, 729981505+98
-3, 328805113F+90 1 2783695295499
-2 613126577€+00 -2 S92076424E-01
-1 819200016E+00 2. $536189636+09
]
84

-8, 500000000E-62
~2. 00088000001

3 420081430601
-9, 296926240681

3. 000000000€+00
5. 080000000E +00
1 100000000E+61

9. 396926210601
5. 000080009€-01
3. 420001430601

TRUNCATED VALUES

=3. 890000000E +09
-2 780000000E+08
S. 120880000€ +00
1. 130800000€ +00
-1 860000000E +00

2. 190000000F +00
7. 800000000E +00

~4. 850000000€+00
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COMPUTED DEFINING PARAMETERS FROM "EXACT"

NUMBER OF ITERATIONS= 42

RADIUS OF DIFFERENCES

COMPUTED CHARACTERISTIC VALUES

TABLE 3B

3. 974336422 -08

-1 74999997661 1. 200000065 +00
-1 249999984E-81 3. 999999996E+08
-3. 000BA0B45E-81 9. 000AORRA1E +08
CHARACTERISTIC YALUE DIFFERENCES
-2 352000000E-09 -5. 169000800€-99
-1 S553000000E-09 4. 140800000€-89
4. 51600000009 -6. 800900A0E-10
COMPUTED COEFFICIENTS
-1 736481425661 9. 848877481E-01
9. 396926191E-81 -3. 420201077E-61
7. 66044462001 ~6. 427876192¢-81
COEFFICIENT DIFFERENCES
-3. 552500000 -08 4. 922000000€-09
1. 857000000E-09 =3. 526400006 -85
1 89620000008 9. 22706000809
85

-8. 508900306t -82
-1 000000O44E-B1
-2 000000000E-B1

3. 057100000609
4. 433000000E-09
-4. 200000800E-11

3. 420201612601
-8 66825421501
-9. 396926210681

-1 822090006¢-63
1. 753408000E-65
4. 6BDO0RAAE-11

FUNCTION VALUES

3. 000000OR1E+00
5. BB0OPODD4E 190
1. 100900006E +61

-1, #50080000E-89
-4. 150000000E-09
1 002000000E-16

9. 396926483E-81
-4. 999999672E-01
3 420201421661

-2. 725300080E-88
-1 282000800€ -6
9. 170000000€-10
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TABLE 3C

COMPUTED DEFINING PARAMETERS FROM TRUNCATED FUNCTION VALUES

NUMBER OF ITERATIONS= 12
RADIUS OF DIFFERENCES

3. 989296429¢-88

COMPUTED CHARACTERISTIC VALUES

A
K 1 199999114€+89

-1 74850570%-01
-1 25108585684E-81 4. 00B179343E+00
-2 98397809901 9. 090834954E +00
CHARRCTERISTIC VALUE DIFFERENCES
-1 494291620604 9. 889681900€-65
1 @58564240€-04 -1 793427200€-04
-1 662190872683 8. 349541900E-04
COMPUTED COEFF ICIENTS b
k
-1 738778722¢-01 9. 830853908E-01
9. 381608229 -01 -3. 418689030E-81
7. 636856726E-81 -6. 377080857E-81
COEFFICIENT DIFFERENCES
2 296941720E-04 1. 882362966E-83
1 532596893¢-83 -1. 5123997606 -04
-2 438770223€-83 5. 879684301E-03

-8. 510682750E-82
-1 083142894E-01
-1 9957906700E-01

1. 060274961E-04
3. 142893550E-04
~2. 093292410E-04

3. 438154793E-01

-9. 958362660E-84
=7, 928256350E-64
-2. 228565692£-03

3. 089992925E+00
4. 999558749€+00
1. 8999975086E+04

=9, 25249000045
4, 452508900 -04
2 491700000645

9 393933356€-64
—4. 997642555 -84
3. 42027307704

2 9926524306 -04
-2 157444740604
-1 74646890604
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TABLE 4A

DEFINING PARAMETERS, FUNCTION VALUES AND TRUNCATED VALUES

CHARACTERISTIC VALUES

-1 750000000t -01

FREQUENCIES W

1 690000000 +09
2. 998000000t +08
3. £90900000¢ +00
4. 700000000€ +08
8. 9500000006E +00
1 999000000 +81

FUNCTION VALUES

-4. 308366992E +00
-3 391098418E+00
4. 187727771E+08
-1 967826556E +08
-1 682234702¢+00
-4. 720913679 +08
5. 827163697E-01
7. 563575204 E +00
3. 564887599 +08
3. 731658938¢-01
-2 450620795E+00
-1 719677684 +00

S ST il

by

9. 84807730601
-3. 426201436€-01
-6. 427876100€-21

Worg
1 300000000F +08
3. 190000000 +00
4. 100006000E +00
5. 200000000k +68
9. 39000800E +00
1 12900B0BAE+81

2 167683510€+00
7. 824835025¢ +08
1 515316314E+08
=3, 851641544E+08
=3, 85485074 2€ +08
-1 199874821F-01
4. 880048139E+00
3. 146831743€+00
-6. 609237724E+08
3. 277486453E+00
-2 S42912346E-01
3. S35836719€+08

= -0.866025404 + 0.5i

3. 420201430E-01
-8. 668254040601
-9. 396926210601

3. 6080AAAAGE+00
5. 090800000€+00
1 190000006¢ +81

9. 396926210E-81
5. 000000000E-81
3. 420201430E-01

TRUNCATED VALUES

—4. 300000000€ +08
-3, 390000000¢ +00
4. 160000000€+00

2 100800006E +88
7. 620000000€+08
1. 510000000E+00
-3. 850000000€+80
-3, 950000000€+900
-1 198800006E-81
4. 899000006¢ +80
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TABLE 4B
COMPUTED DEFINING PARAMETERS FROM "EXACT" FUNCTION VALUES

NUMBER OF ITERATIONS= 12
RADIUS OF DIFFERENCES 4. 304594665£-88

COMPUTED CHARACTERISTIC VlliES

k
-1 749999970€-01 1 200090089 +00
-1 25000081 7E-01 3. 999999995E+80
-3. 690080826E -81 9. 00000NADE +00
CHARACTERISTIC YALUE DIFFERENCES
~2. 991000000-09 -9. 150000008c-09
1. 715000000E-09 5. 499000000 -09
2. 567000000¢~89 -3. 56009000089
COMPUTED COEFFICIENTS b
k
-1 736481104E~81 9. 848877497E-61
9. 39692647801 -3. 420201061E-01
~7. 66044464 7E-01 -6. 427876020681
COEFFICIENT DIFFERENCES
-6. 763000000 -08 3. 299900006E-89
-2 683300000E-08 -3 6863P00ARE-08
1 871000000€-83 -8. 913000000E-09

90

-8. 500008293€-82
-1 090000071E-01
-2 020009009E-01

2. 5272000006-09
7. 114000000 -89
9. 220000000E-10

3. 426201824£-01
8. 6602541 09E-01
9. 396926256E-81

3. 0000000A3E+00
1 100086800€+81

-3. 120000000c-69
~2. 820000000€ -89
-2 000000008E-10

9. 3969264166-61
3. 008008267E-01
3. 420201470601

-2 00170000008
-2. 665000000E-06
=3 955000000E-99
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TABLE 4C
COMPUTED DEFINING PARAMETERS FROM TRUNCATED FUNCTION VALUES
MMBER OF ITERATIONS= 12
RADIUS OF DIFFERENCES 4. 263717305E-08
COMPUTED CHARACTERISTIC VALUES
A
-1 7488752166-61 k 1. 20838321 E+00 -8. 49662895%-82 2 999974946E+08
-1 249392160E-61 4. B00879569E+08 9. 576811942682 4. 99991 8559E+88
-2 99724589501 9. 00864 2855E+00 -1 999536272¢-61 1 099948277E+81
' CHARACTERISTIC VALUE DIFFERENCES
. 1. 124789950604 -3. 832214000604 -3 371041210€-05 2 85405000685
A -6. 978483500665 -?7. 866982000€-95 -2. 396805799E-04 8. 144070000685
=2 T5A904950€ -84 -6. 42655350004 ~4. 63728250085 5. 17234200004
COMPUTED COEFFICIENTS b
! : -1 727348771E-61 k 9. 831958977E-01 3 448882556E-01 9. 39871069384
9. 37478468501 -3. 41459355%-91 -8. 648355125601 4. 975483940E-01
~7. 668864915661 -6. 399448237¢-81 -9. 382816285601 3. 41654381 7e-01
COEFFICIENT DIFFERENCES
-9. 141098520€-84 1 61185527983 1 318873810E-84 6. 215516510604
2. 244452546E-83 -5. 68787110084 -1 18989155083 2. 454685900€-63
on 4. 204852109685 -2 842786338E-03 -1 411699465E-83 3. 657612920E-04
]
1]
-
‘ 9]
B
k o |
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Figure 10b. Graph of |w(w)|,Coefficient b, = -0.866025404 + 0.5i




AFWAL-TR-80-3136

& Ag = -0.1 + 4.5i

~a
Fan
ae = =0.1 + 4,24
6 >‘6
Figure 11a. w(w) for Four Values of A
)

‘ 94

Tl

= -0.1 + 4.1

PSR, S

;._......\.\.“..’Ja‘x... LS St Wb T ind

[
t
i
i
b
!
i
;
'
E
r




AFWAL-TR-80-3136

Figure 11b. Graphs of |w(w)| for the Functions w{w) of Figure 11a
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TABLE 5A

DEFINING PARAMETERS, FUNCTION VALUES AND TRUNCATED VALUES
A, = ~0.1 + 4,54

CHARACTERISTIC VALUES

-1 750000000€ -61
-3 0B0000BVIE-21
-1 250000000 -1

COEFFICIENTS

-1 736481780E-81
-7. 668444430E-81
9. 396926210E-81

FREQUENCIES w

1. B00000ORRE 100

FUNCTION VALUES

-4. 316814532k +28
-3. 412848693E+09
-1 687628337E+00
-4 723241 390E+00
4. 133485575E+00
6. 967987648E-81
3. 743445480E-81
7 937319978E+00
-2 454665604E +00
-1 7218120126 +06
3. 550468257E +00
4. 129392554E +08

INITIAL VALUE FOR UPPER CLOSE CHARRCTERISTIC VALUE
X(6,1)= -2 0ODAADNORE -82

A

k

6

1 200000000 +00

4. 00008ACARE +08

9. 848077530E-01
-6, 427876100€-81
3. 426201 430694

2 278195433E+00
7. 756099997 +08
-3. 681134416E +00
-5, 128592331E-81
3. 39716 S1E+B0
8. 252341996E-91
5. 899489015€ +8¢
4. BB7458596E+08
-7. 597892780E~81
3. 178142726k +08
-3. 583763548 +0¢t
-4. 4910830 23E +0¢

96

3. 428201436681
-9, 396926210¢-61
8 668254040E-01

3. 62000000 +00
1. 188000000F +81
4. S80800000E +00

9. 396926210E-61
3. 420201430681
5. 00000000RE -81

TRUNCATED VALUES

-4. 310000000 +00
-3. 410900000E +00
-1, 650089000E +00
-4. 720000000E +00
4. 130000000 +00
€. 990900000E 01
5. 700000000 -1
7. 530000000 +00

X(6: 2)= 4 700000000 +00
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TABLE 5B

NUMBER OF ITERATIONS= 14

RADIUS OF DIFFERENCES 3. 299920758608
COMPUTED CHARACTERISTIC YALUES
A
; ) -1 7500000035-31 < 1 209000085E+00
f' -2 99999999001 9. POROBAAR4E +00
-1 25000AA6E 81 3. 999999999€+98
CHARRCTERISTIC VALUE DIFFERENCES
8. 03000%M0E-18 -5. 260000009€-09
- -1 973000000 -39 4. 240080690€ - 9°
6. 300AIAAAOE-18 1. 169090009€ 9%
COMPUTED COEFFICIENTS b
. k
B -1 726481484E-91 9. 848977649681
-7 660444471E-81 -6. 427875873601
9 396926321E-81 -3, 428291350€-91
COEFFICIENT DIFFERENCES
-2 755608000E -85 -1. 18980MH09E-at
4. 125090000¢ -89 -2. 267400009E 88
. -1 189600000E -85 -8, 812000099E-09
]
97

-8. S00000850E -02
-2. 0890RA011E-01
-9 999999976E-62

4. 956800000E -10
1. B508000B0E 89
-2. 37000060010

3. 428201 611E-01
-9. 396926283E-61
8. 668253986E-81

-1, 899560000E -68
7. 275000009 -89
3. 400000006t -89

COMPUTED DEFINING PARAMETERS FROM "EXACT" FUNCTION VALUES

3. BO000P0B2E +09
1 103000080€ +81
4. 499999998E +00

-1. 630000808E -89
2 800000000 -10
2. 170009000 -85

9 396926216€-81
3. 42820145281
5. 00080e113E-01

-1, 500000000 -11
-2. 180000899 -09
-1 132060800E-88
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TABLE 5C
COMPUTED DEFINING PARAMETERS FROM TRUNCATED FUNCTION VALUES
i
NUMBER OF ITERATIONS= 14
RADIUS OF DIFFERENCES 3. 319000288E 83
COMPUTED CHARRCTERISTIC YALUES
A
- 7SR4T025E-8 K 1 1999230976400 -8, 496748930622 2 9999724975 +00
-2 982899268691 9 BAGBTAZ05E+00 -2 982315472601 1 09995152E+81
-1 25215394901 4, EPAAS44S2E+00 -9, 96965 368TE-82 4. 499991346400
CHARRCTERISTIC YRLUE DIFFERENCES
. 2. 2470250706 -04 7. 670701000%6-05 -3, 299969820€ -85 2. 75026600085
) -1 799963161683 -8 760845800604 2 3151718606-04 4. 4794600964
2 1579485306 -04 -8, 448213009685 -3 834639290604 8. 6540400906-06
COMPUTED COEFFICIENTS
|- -1 735835646681 9, 639545396681 3 417477000681 9. 385999903601
! -7, 632716826681 -6, 369841343681 -9, 481204541601 3. 48297925%-81
9 395063947E-81 -3 421755437681 8 641210058681 4. 992500052601
COEFFICIENT DIFFERENCES
-6 461257600685 3 53121375006-04 2 724430280604 1 892720725683
-2 772840382693 -5, g8347S7A7E-83 4. 278300660604 1 7222171486-83
1. 862262730604 1 554807480E-04 1 994378190E-83 7. 499948500604
hd 98
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TABLE 6A

DEFINING PARAMETERS, FUNCTION VALUES AND TRUNCATED VALUES

CHARACTERISTIC VALUES

-1, 750000000 -81
-3, DOOBDAGARE -1
-1. 250000000€ -01

COEFFICIENTS

-1 736481750661
-7 B6B444430E-61
9 396926216€-81

FREQUENCIES Wy

1. POOGBIDI0E +00
2. S0DDX0BIE +00
8. 9000000E +00
1 390000009E +81
3. S00P0BABOE +00
4. 200000096¢ +00

FUNCTION VALUES

-4 326975/B9E Y
-2, 448416174E+00
-1 692892469 +09
-4 726150750E +90
4. 0302247878 +00
5 622342976E-01
7.492927000¢ +00
-2 439648772E+08
-1 724485631E +v@
2 948227652 +00
4 247340727E+00

g

9. 84807720661
~-6. 427875100E-81
-3. 420201430601

wp+6
1. 300800000E +00
3. 180009600E +00
9. 300000000 +00
1. 120003000k +81
4. 100082600t +00
4. 500000000t +08

2 2795957036 +00
7. 8350835768 +00
-3. 59379%572E+0@
-5. 89579901 6E-81
3. 84986221 7E+00
2. 18864881 7E+00
5. 1126384 54€+08
4. 114696285E +0
-7. 53681921501
3 181106350E 400
-1. 45394061 7E +00
-4, 952053390E +00

INITIAL VALUE FOR UPPER CLOSE CHARRCTERISTIC VALUE
X(6.11= -2 DOOPONINOE-B2

101

= -0.1 + 4.3i

-8. 500000000E~02
~2. CO0000060E -1
-1 G00000000E 01

3 420201430601
-9. 396926218661
8. 666254040801

3. 000000G00E +00
1. 100000000F +01
4. 200900000E +00

9. 396926210€-61
3. 4202014306-01
5. 90PAGOAGRE-01

TRUNCATED VALUES

~4. 320000690E +00
~3. 440000090¢ +00
~1. 690000000¢ +08
-4 720000000E +00
4. 330000090E +60
3. GO0000000E +08
5. 600000000E -1
7. 490000000 +00
-2, 450000000k +02
-1 720000000E +28
3. 940009000¢ +00
4. 240000000t +08

X6 D)= 4. SoNDB0000E+00

2. 270080000 +00
7. 830000006 +00
-3. 590000000E +98
-5. 000000000E ~81
3. 840000000E +06
2. 100000000 +60
5. 116006000€ +90
4. 110000800¢ +00
~7. 508000060 -1
3. 150000000E +09
-1 450000000€ +00
~4. 950000000 +00
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TABLE 6B

COMPUTED DEFINING PARAMETERS FROM "EXACT" FUNCTION VALUES

NUMBER OF ITERATIONS= 15
RADIUS OF DIFFERENCES 2

COMPUTED CHARACTERISTIC VALUES

CHARACTERISTIC YALUE DIFFERENCES
1 800000000 -10
5. 00008000E -12
1. 917000000€-69

COMPUTED COEFFICIENTS
~1. 736481545E-01
~7. 668444 505E-81
9. 396926410€-#1
COEFFICIENT DIFFERENCES
~2. 321300000E-88

7. 845000000E-89
-2 001200006E-88

628388666E-88

1. 200009003E +00 -8. 590080835E-82 3. 000800001 E+09
9. 0APAR0Y3E+00 -2. 090000907t -01 1. 190000880E +81
3. 999999999 +60 -9. 99999985682 4. 299999999E+00
-3, 630090000 -89 3. 506000008E -10 -1, 4950000090E-09
-2. 770000000E-99 6. 780000000E-10 3. BOBOA0NARE-10
7. 500003008 -1¢ -1 443000000E-29 1 150008000€-89
9, 848077581E-81 3. 42026159261 9. 39692620201
-6. 427873986E-61 -9. 396926259%-01 3 428204433E-81
-3. 420201325601 8. 668253875E-61 5. 090900064t -01
-5, 05300000005 -1 615400000E-88 8. 370000090E-10
-1 144000000E-68 4. 863000090C -89 -2 720000000E-10
-1, 52500000E 68 1. 652009000E-08 -6. 370000000t -89
102
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TABLE 6C

TN

COMPUTED DEFINING PARAMETERS FROM TRUNCATED FUNCTION VALUES

NUMBER OF ITERATIONS= 15
RADILS OF DIFFERENCES 2. 98283751868

COMPUTED CHARACTERISTIC YALUES

A
-1 7475040656-01 K 1 2008245479 +88 -8 585172644E~02 3 BO031437E+00
-2. 987863957E-81 8. 999429618t +00 ~2. 883951963E~81 1 10081213F +81
-1 258158041601 3. 9998544 78E+80 ~1 098991 056E-81 4. 308193887E+08
CHARACTERISTIC VALUE DIFFERENCES
~2. 495934736E-04 -2. 434690006 -84 5. 172643570E-85 -3. 143725008605
-1 21368426983 S. 781822¢00E-04 3. 951963360084 ~1 213162008E-04
1. 5884835306€-85 1 455224 200E-04 9. 918564000E-05 ~1. 938869900E-84
COMPUTED COEFFICIENTS
-1 733584277E-81 9. 524025985E-81 3. 424241207804 9. 290667146E-01
-7 68761826961 -6. 399357¢28E-84 -9 394357272801 3. 442706322601
9 371556185681 -3. 418099093E-81 8. 661648285¢-81 4. 975241475€-81
COEFFICIENT DIFFERENCES
-2, 837 2om8E -0 2. 464854469E-0x ~4. B39776930E-84 €. 259963920€-64
-5, 28342243% -83 -2. 851847218E-0x -2 568938260E-04 ~2. 250489156£-63
2. 537082473E-83 -2 18233:730E-94 ~1. 386245400E-04 2. 473852470665
103
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Figure 13a. Graph of w(w) )‘6 = -0.1 + 4,34
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- Figure 13b. Graph of |w(w)| Ag = -0.1 + 4.3i
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TABLE 7A

DEFINING PARAMETERS, FUNCTION VALUES AND TRUNCATED VALUES

CHARACTERISTIC VALUES

COEFFICIENTS

~1 736481780E-01
~7. 660444430601
9. 396926210€-01

FREQUENCIES wy
1 000082000E +00

FUNCTION VALUES

-4. 332885900E +y
-3 469381322E+98
-1. 695655567E+00
-4. 727552497E +00
3. 998994621E+88
6. B45616763E+09
5. 556599425¢ -84
7 466278770E+00
-2 461998985€+00
-1. 725774509 +00
© 458849612E+00
4. 387522910€+00

3. 90DABBNAE +98
1 190000600E +81

9. 396926210€-81
3. 420201430E-81
5. 000000090€-81

TRUNCATED VALUES

INITIAL YALUE FOR UPPER CLOSE CHARACTERISTIC YALLE

X6, 1)= -2 CO0PORONRE-D2

g = ~-0.1 + 4.24

1. 200000300€ +00 -8. 500000006t -02

9. B900AMOE +90 -2, 00000AGE-81

4. BAGGAGICRE +08 -1. HOABGOBARE -1

9. 8486775:0€-01 3. 428201430E-01
-6 427876100601 -9, 396926210€-81
-2 420291430€-81 8. 668254040E-01

W06

1. 200000960C+08

2. 1000000t +06

9. 300008200 +00

1 129000000E +81

3. S0PPAAAHRE +09

4. 400000000E +98

2. 284853348E+80 ~4. 330000000t +06

7. 884121555€+00 -3. 460000006E +00
~2. 596408336 +00 ~1. 690000000E +90
~5. 888369226601 4. 720000000 +00

4. 322591530E+98 3. 9900P0000E +98

9 1832608106-01 6. B40PPAORAE +00

5. 128871349 +09 5. 500000080t ~81

4. 183781567E+08 7. 460000009¢ +00
~7. 5884297 206-81 -2. 460009000E +00

3. 1825823%5E+08 -1 720000000 +00

4. 499983009 +00 6. 450000090€+00
-5. 4111048256 +08 4. 360000000E +08

= 4. 3PPIDIGADE +00
106
N .

2. 200800000E +08
7. 80000006 +00
3. 590000000 +00
~5. 6B0PBAAGEE-61
4. 320000000t +00
9. 108000008€-81
S. 120000008E +90
4. 150000000 +00
7. S00080060E-81
3. 180009000€ +06
4. 490800000t +60
~3. 410000000€ +00
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TABLE 78
COMPUTED DEFINING PARAMETERS FROM "EXACT FUNCTION VALUES
MWMBER OF ITERATIONS= 14
RADIUS OF DIFFERENCES 4 418275813608
COMPUTED CHARACTERISTIC VALUES
} \
1 7S000M2E-81 N 1 2080990085+00 -8 SARRRARSAE-82 3. 0000000825400
-3, GRGBRRRAE-B1 9. POPAAPRRSE+08 -2, P0P000R13E-01 1. 100000000E+91
-1 250000917591 4. DOOPADR1E +00 -9, 99999973292 4 199999997E+08
CHARRCTERISTIC YALUE DIFFERENCES
2 2300RE-09 -8, 250000IRNE-40 5. 425000000610 -2, 290000000689
2 SPPPRRRNE-11 -5, 620000000609 1, 87000000609 3. GOPAAN000E 10
| 1 663090099689 -5, 400000000 -1 -2 63PAGHORE-99 3 470000000609
~a
COPUTED COEFFICIENTS
| - 7481200E-01  © 9 sAgavI7OoE-a 3. 420091609601 3. 39692649981
B 7. 66B444567E -1 6, 42787509001 -9, 796926295601 3. 420201450-01
| 9 396906637591 -3 4200R457E-81 8, 668253690651 5. BPORARZBIE-91
" COEFFICIENT DIFFERENCES
-5 775200000628 -2 6869600006-65 -2, 495200000665 1. BOPIPP00E-09
| 1, 263990900663 -2 @39300000-08 8, 4400000090 -2, 114009000€-29
| —4, 271200000683 2. 676000000699 3. 4990A0009~33 -2 8139000006-95
-8
107
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TABLE 7C

NUMBER OF ITERATIONS= 14

COMPUTED DEFINING PARAMETERS FROM TRUNCATED FUNCTION VALUES

RADJUS OF DIFFERENCES 4. 42546874508
COMPUTED CHARACTERISTIC YALUES
A
-1 749991751E-81 k 1 200131623k +00 ~8. S83565927E-82 3. 0008264 30E+08
. -2. 993761382¢-61 9. 00B25A163E+00 ~2. 08208961E-01 1 190010790E+01
-1. 25360316381 4. 9BA733996E+90 ~9. 938138200602 4. 199427641E+00
CHARACTERISTIC YALUE DIFFERENCES
-B. 24963000087 -1 316227400E-04 3. 565927850E-85 -2. 643022000605
-6. 23861 7930E -84 -2 501627800E-M 2. 099681120E-04 -1 877952000E-04
2 BB16637T0E-04 -7 389976.200E -84 -6. 186179950E-64 5. 721590300€-04
-
COMPUTED COEFFICIENTS b
k
-1 748718629E-01 9. 838335283t-081 3. 423628101E-81 9. 385671182¢-01
o -7. 63711964%-01 -6. 443197966E-01 ~9. 383571265E-01 3. 435831736801
! - 9. 465211470E-61 -3, 47454233901 8. 681462645E-81 5. 855263387E-61
COEFFICIENT DIFFERENCES
4. 236848470604 9. 742247 260E-04 3. 426671420E-04 1. 125568283583
~2. 332536480E-23 -1 467812378E-82 -1 335494526E-83 -1 563038795E-43
-6. B38525966E-83 5. 13489889 -93 5. 879139490E-03 -5. 526338720€-63
108
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Figure 14a. Graph of w(w), g = -0.1 + 4.2i
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Nt 1= -2 DOMBINIE-82 ¥(6. 2= 4 Z000000N0E +90

m

TABLE 8A
DEFINING PARAMETERS, FUNCTION VALUES AND TRUNCATED VALUES
Ag = 0.1 + 4.1
CHARACTERISTIC VALUES
-1 75000000091 1 2060000006 +00 R ) 3. (0RAAORE +3
-2 PABAAADARE -1 9, GPGANDAAOE +00 -2 0RARAOGE-1 1 109090000E +01
-1 2500009006 31 4 D0AMAA0E +29 -1 0BAA0AAAGE-B1 4. 10089RA00E +00
COEFF ICIENTS
-1 776481790601 9 848977530E-81 3. 4200014306-91 9. 396926210601
-7 660444420691 -6, 42767610061 -9, 39692621061 3, 4262014306-01
9 396976210661 -3, 4202914206 -1 8. 66825404901 S. BA00ARNOAE-B1
“ FREQUENCIES w W46
- 1. P0ARA0A00E+00 1 39000A000E +30
2 OBOGORENE +08 3 100000000E+09
& SODDPODERE +29 9 30W000E+00
1. 0900B009E +01 1 1200009906+01
. 3, CAO0ARAORE 00 3. SP0DHO00RE +00
|- 4. 2000B0000E +20 4. 4000PO0RE +00
FUNCTION VALUES TRUNCATED VALUES
-4, 3391141896 +0 2 290547499 +00 -4, 330000000 +00 2. 2900000006 +00
-2 492094275 +0 7. 941378526E+98 -3, 499000000E +09 7. 940000000E +00
-1 693316196E +00 -3 58717350400 -1 690090000E +02 -3, 560R00A00E +00
4 7289218796 +0% -5, P65SS06S%-01 -4, 720000000C +00 -5, S00RADAAIE 91
4 B23307685E+00 S B87453821E+80 4. B200RA000E+00 S, GG0RAAAARE+08
o 8 S539687671E+400 -6, SS49C2991E +9 8. 590RA00RE+00 -6, S5000R000E +09
S 486969939€-01 5 128154321E+ 5. 40PA0AAA0E-61 5. 1209000006 +00
7 4359030256+00 4. 26715R265E +00 7. 4300000006 400 4 260090008E+08
-2 464273199 +0 -7, 481:7M4R1E-01 -2 460000000E +00 -7, 400090000E -3
-1 727038744E+00 3 183345656E+08 -1 720000000 +00 3 1606OBAAGE+08
6 824136963E+00 5. §55653407E+90 6. S0PPOBINE+00 5. S50RPBANGE+00
3 B2BS41519E 408 -5 BT 644E+00 2 G20PA0ANOE 400 -5, D4GPARA0RE +09
INITIRL ¥RLUE FOR UPPER CLOSE CHRRACTERISTIC YALUE
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TABLE 8B

COMPUTED DEFINING PARAMETERS FROM "EXACT" FUNCTION VALUES

NUMBER OF ITERATIONS= 15
RADIUS OF DIFFERENCES 2. 83667939:£-88

COMPUTED CHARRCTERISTIC VNXLES

-1 7O0000011E-a1 1 209080UGE+08
~3. DOVOPR85E~21 9. DOCOPONIGE +00
~1. 250008154E-01 3. 999999999E +08
CHARRCTERISTIC YALUE DIFFERENCES
1 1140008296 -29 -5. 61000062089
2. 791000000E-99 2. 0000011
1. 542600000 -85 1. B3600000E-85
COMPUTED COEFFICIENTS b
k
-1 736481394E-81 9. 848077635661
7. 668444544661 -6 4278761 4E-81
9. 3%6926154E-81 -3, 4261979%4E-01
COEFFICIENT DIFFERENCES
-3 85500800 -85 -1 551700000E-88
1 141600000€-08 7. 383080000E-8°
5. 6093000020t -89 -3. 525930890E -07
12

-8. 500000122602
-1 999999999 -1
-1 0P0200R5E -1

1. 224400000¢ -9
-1 458000000t-18
5. 911000000E -89

3 420204 591E-01
-9 396926213E-61
8. 668253991E-81

-1 613500000E-63
3. 330000000c-19
4. 910090000 -85

3. 6090AD0BLE+08
1. 100080000E +01
4. 10900001 2£+00

-1 239000000 -89
5. 000000006E-10
-1. 181000000 -08

9. 396926300€-01
3. 420201397881
4. 999996645E-81

-9. 635000000 -09
3 324008060E 99
3. 355370000€-87




AFWAL-TR-80-3136

TABLE 8C

COMPUTED DEFINING PARAMETERS FROM TRUNCATED FUNCTION VALUES

NUMBEF: OF ITERRTIINS= 15

FROIVS OF DIFFEREMCES

3 #28321195¢-88

COMPUTED CHAFRCTERISTIC YALUES

-1 7SZHeSHedE-a1
-3 9ER175£22E-81
-1 27974132601

A

1. 200160501 E+88
9. 981144931E£+00
4. 082002 06E 0

CHARRCTERISTIC VALUE OIFFERENCES

3. Saoev 2e30E-04
-1 186437795€-83
-1 REESE6B4BE-0

CUMPUTED COEFFICIENTS
-1 T29ZHSd4E-01
-7 BI7ET4TTTE AL
9. 649118792£-01
COEFFICIENT CIFFERENCES
-7 dP22I05eeE-4

-2 Z%9€5211E-82
-2. 5219381 7E -0

-1 6@08RE-Bd
-1 144921150€-083
-2. 852305980E-82

9. 84114482¢6E-01
-6. 36381:508E-01
-3. 832885728E-61

6. 9327842 70E-04
-6, 206253 0E-97
4. 12¢842982E-82

113

-8. 49861673902
~2. 991253302681
=9, 828075794E-62

-1. 383268930€-85
1 253689440E-04
-1, 719242859%€-83

3 42823893E-01
-9, 383885521€-181
8. 404534054E-01

=3, 793322000E-06
-1 312068586E-63
2. 557199863E-62

2. 999957827E+90
1 899998211£+01
4. 9988667 74E+00

4. 217287000E-85
1 789110000E-85
1 194225970¢-83

9 28923439%-61
3. 426750860E-81
5. 4138981 4{E-01

7 6918187106-04 *
6, 54943828064
~4, 130001405682
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Figure 15a. Graph of w(w),A6 = -0.1 + 4,14
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TABLE 9A

DEFINING PARAMETERS, FUNCTION VALUES AND TRUNCATED VALUES

CHARRCTERISTIC WALUES

-1, 7I00AaMA0E-a1
- S
-1 250080000 -81

COEFFICIENTS

-1 726481 700E-81
-7 658444436E-81
9 3969262106-91

FREQUENCIES wp
1 DOBORANIE +
2 IR + 90
% RRDNNRIE +08
1 ROADOMIAOE +81
I GRNARNAMME +on
4 200080000E +00

FUNCTION VALUES

-4 342350087E+80
-1 Se5942205E+0
-1 €99%6:18241E+89
-4, 729593563E+08
4 1272768063E +0i
£ 741516852£+08
3. 498524266E-01
7 419194454E+09
-¢ 4633897126490
-1 727653335E+00
7 448711571E+00
< 626841299 +08

M
1. 200000000 +24

9, 0AAAAVEIE D0
4. PAAHOOBGOE +00

9. 84508775 2RE-01
-6. 427876109€-01
-3, 420201470E-81

wp+6
1. 300000 +00
2. 190000GH3E +08
9 2000000GIE+08
1 120000060 +91
3. S0N000NIE +08
4. 400000:0H0E +00

2. 293566793 +00
7. 874718°48E+00
~3. 9BS619009%E +00
-3, 858263316E-01
5. 6646191426400
~7. 1831856 7OE+00
5. 132459956E +08
4. 315758260E+08
~7. 468317369 -61
3. 1844971408 +00
6. 926368204E+08
-4. 839070MBE+08

INITIRL YPLUE FOR UPPER (LOSE CHARACTERISTIC VALUE

K18 D= =2 BHMpeeeuE-92

116

-8 50000000t -62
~Z. DOGABBAOGE-81
~1. 000800000 -01

3. 4202014306-01
-9, 396926210E-01
8. 6EB254040E-01

3. 0A000AAARE+00
4. 950000000 +00

9. 396926210€-81
3 420201430E-61
5. DOBBRBeRE -1

TRUNCATED VALUES

-4, 34P0D000E +08
-2 50Pa0000ME +08
-1. 69000P000E +98
4. 720000000 +00
4. 120000000¢ +00
6. 740000000 +00
5 400000000 -1
7. 410080000E +08
=2, 460000000 +89
-1 720000000 +30
7. 440000009 +00
2. 620080000E +00

X, 2)= 4 200000000E +00

W T Lok RL TR . A
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TABLE 9B

COMPUTED DEFIMTING P/.-AMETERS FROM "EXACT" FUNCTION VALUES

NUMBER OF ITERATIONS= 18
RADIUS OF DIFFERENCES 3. 118965857608

COMPUTED CHARACTERISTIC VALUES

A
k
-1 749999993¢-81 1. 280000000 +08 -8. 500000851E-62 3. B2290B000E +90
-3. 090000005t -61 8. 999999999 +00 -1 999999996¢-61 1. 190080008E +61
-1 249999581E-01 3. 999999994 +00 -9. 999998924E-82 4. 849999972£+08
CHARACTERISTIC YALUE DIFFERENCES
-1 450000000E-16 -2. 600000000E-10 9. 126000000€-10 -2 980P00808E-10
4. 600900000E -10 5. 400000000€-16 -2 890000000t -1 2 000000000E-18
-4. 187000000t -68 6. 210000000E-09 -1 676100000E-88 2. 814000008c-88
COMPUTED COEFFICIENTS b
k
-1 736481758E-91 9. 84887752581 3. 420201472601 9. 396926254€-61
~7. 66044443781 -6. 42787613501 -9. 396926203¢E-81 3. 420261412801
9. 396924228¢-61 ~3. 42021417901 8. 668295942681 3. 090812727E-61
COEFFICIENT DIFFERENCES
~2. 240006000 -03 3. B7000PA00E-18 —4. 167000000E -89 ~4. 376000000E-85
6. 930000000t -19 3. 46400000009 7. 230000900E-10 1. 769000000E-09
1 981960000E-67 1. 274920000E-06 -1 992200000E-87 -1 272664008E-06
m7z
e A el . ot e, s s . "“—‘A—‘mm;

.
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TABLE 9C

COMPUTED DEFINING PARAMETERS FROM TRUNCATED FUNCTION VALUES

NUMBER OF ITERFTIONS= 1%
RADIVS OF DIFFERENCES 9 633412042E 08
COMPUTED CHARRCTERISTIC YALUES

A
-1 758272523E-81 K 1 208112477E+08

-2 967580140E-01 9. 000, 72484400
-1 247445435661 3. 999254730 +0P
CHARACTERISTIC YALUE DIFFERENCES
2. 725232906E-29 -1, 12477 4200E-04
-1 241°8rB24E-83 -7. 72484150004
€. 744548536k -0 7. 452700300E-04
COMPUTED COEFFICIENTS b
k
-1 735821396E-81 9. 839%13250E-M
-7. 626346042E-01 -6. 38029361 7E-81
9 374991959€-61 -1. 978%492487E-31
COEFFICIENT DIFFERENCES
-6. B3I INE-H5 8. 1592804 90E -4
=2, 249828847603 -4, 748249274E-03
2 193425143E-82 -2, 341297943E-41

118

-8. 506619756E-62
-2 PSO11E-B1
-1. 02926104701

6. 619795680E-85
5. 021208900E -85
2. 926164654E-03

3. 423672743E-01
-9, 378672626E-81
8 635735663E-81

3. 471312840604
-1 825358396E-83
2 451837710E-83

3. BDBDA73BAE +08
1. 899998201E+01
4. B56833040E+00

-7. 383640000E-86
1. 798520000E-85
-6. 833939550E-03

9. 398274240c-01
3. 424253723e-01
2. 669755431E-01

6. 651969948E-04
-4, 052292720E-84
2. 33824456981
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Figure 16a. Graph of w(w), g = -0.1 + 4,051
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Figure 16b. Graph of |w(w)|,Ag = -0.1 + 4.051
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TABLE 9D

FUNCTION VALUES DETERMINED USING THE COMPUTED

CHARACTERISTIC VALUES AND COEFFICIENTS FROM TABLE 9C

COMPUTED CHARRCTERISTIC VALUES

-1 75027252301
-2 987550146E-81
-1 317445485681

COMPUTED COEFFICIENTS

-1 7358243%t-#1
-7 6263468428 -0
9. 37493195961

FREQUENCIES wp

1. 900008200k +90
2. 900000000t +39
8. 9PDOBRCN0E +20
1. #50000A00F +81
2. SP00GREHOE +00
4. 20000000k +o@

Ak

FUNCTION VRLUES BHSED ON COMPUTED COEFFICIENTS
AND' COMPUTED CHARACTERISTIC YALUES

-4 3399939E2E+00
-2 499999582E +89
-1 689999997E +08
~4. 720000046E +08
4. 11999999%6E +08
£. 739999997E +09
3. 490008166E-01
7. 410098126 +00
-2 439999993E+08
-1. 720000905E +00
7 440009820E +00
2. 6199999978 +00

1. 208112477E+08 -8. 586619756E-82 3. 98087354E+90

9. B00772484E +00 -2 0905821 21E-01 1 999998201£+81

3. 9992547306 +08 -1. 829261647E-01 4. 856833040E +00

9. 839916250 -81 3. 423672743E-61 9. 398274240601
-6. 380397617E-04 -9. 378672626E-81 3 424253723801
-1 878993487E-61 8. 635735663681 2. 669755431E-01

wp+6

1. 30008900t +00

3. 10006000 +00

9. 3000HHD00E +00

1 120064300E +01

3. 90P000000E +09

4. 400066I00E+00

TRUE FUNCTION YALUES

2. 2899%CI80E +00 -4 242356007E+00 2 293566793E+08

7. 969999968E +60 3. 585942206E +00 7. 974718348E+00
-3, SP999CIIGE +60 -1 699618241E+080 -3. 585619089 +00
-S. 80060035 1E-01 -4 729593563 +08 =5. 858363316681

5. 660000002t +01 4. 127276863E+98 5. 6646191 42E 400
-7. 179959397 +00 6. 741516852€+08 ~7. 182185676E+00

9. 129999983 +00 5. 450584266801 5. 132459956E+00

4. 389949976E+00 7. 419164484E+00 4. 315758268€ +00
-7. 39999993881 ~2. 465389712¢ +09 ~7. 468317969 -01

3. 179993994k +29 -1. 727659556E+00 3. 184497340E+00

6. 919999722¢ 400 7. 448714571E+00 6. 926368284E+00
-4. 849959399E+00 2. 628841209 +08 —4. 859870048 +08

121
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} Figure 17. Comparison of Values of w(w) for w(w) Computed Using

Exact Characteristic Values and Coefficients and
w(w) Computed Using the Characteristic Values and
Coefficients From TABLE 9C
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